def lal_constantupsample_04(pipeline, name): # # This is a simple test to see that the element treats gaps correctly for complex data # in_rate = 10 # Hz out_rate = 20 # Hz buffer_length = 1.0 # seconds test_duration = 10.0 # seconds gap_frequency = 0.1 # Hz gap_threshold = 0.02 # Hz control_dump_filename = "control.dump" # # build pipeline # src = test_common.gapped_test_src( pipeline, buffer_length=buffer_length, channels=2, rate=in_rate, test_duration=test_duration, width=64, gap_frequency=gap_frequency, gap_threshold=gap_threshold, control_dump_filename=control_dump_filename) test_duration = 10.0 # seconds togglecomplex1 = pipeparts.mktogglecomplex(pipeline, src) capsfilter1 = pipeparts.mkcapsfilter( pipeline, togglecomplex1, "audio/x-raw, format=Z128LE, rate=%d" % int(in_rate)) tee1 = pipeparts.mktee(pipeline, capsfilter1) pipeparts.mknxydumpsink( pipeline, pipeparts.mkqueue(pipeline, pipeparts.mktogglecomplex(pipeline, tee1)), "%s_in.dump" % name) upsample = pipeparts.mkgeneric(pipeline, tee1, "lal_constantupsample") capsfilter2 = pipeparts.mkcapsfilter( pipeline, upsample, "audio/x-raw, format=Z128LE, rate=%d" % int(out_rate)) #checktimestamps = pipeparts.mkchecktimestamps(pipeline, capsfilter2) pipeparts.mknxydumpsink( pipeline, pipeparts.mkqueue(pipeline, pipeparts.mktogglecomplex(pipeline, capsfilter2)), "%s_out.dump" % name) # # done # return pipeline
def lal_smoothkappas_02(pipeline, name): # # This is similar to the above test, and makes sure the element treats gaps correctly # rate = 1000 # Hz width = 64 # bytes wave = 5 freq = 0.1 # Hz volume = 0.03 buffer_length = 1.0 # seconds test_duration = 10.0 # seconds gap_frequency = 0.2 # Hz gap_threshold = 0.5 # Hz control_dump_filename = "control_smoothkappas_02.dump" # # build pipeline # src = test_common.gapped_test_src(pipeline, channels = 2, buffer_length = buffer_length, rate = rate, width = width, test_duration = test_duration, wave = wave, freq = freq, volume = volume, gap_frequency = gap_frequency, gap_threshold = gap_threshold, control_dump_filename = control_dump_filename) head = pipeparts.mktogglecomplex(pipeline, src) head = pipeparts.mktee(pipeline, head) pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, head), "%s_in.dump" % name) median_avg = pipeparts.mkgeneric(pipeline, head, "lal_smoothkappas", array_size = 3, avg_array_size = 2, default_kappa_im = 0, default_kappa_re = 1, track_bad_kappa = False, default_to_median = True) kappa_track = pipeparts.mkgeneric(pipeline, head, "lal_smoothkappas", array_size = 30, avg_array_size = 160, default_kappa_im = 0, default_kappa_re = 1, track_bad_kappa = True, default_to_median = True) pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, median_avg), "%s_median_avg.dump" % name) pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, kappa_track), "%s_kappa_track.dump" % name) # # done # return pipeline
def complex_test_src(pipeline, buffer_length=1.0, rate=2048, width=64, test_duration=10.0, wave=5, freq=0, is_live=False, verbose=True, src_suffix=""): head = pipeparts.mkaudiotestsrc(pipeline, wave=wave, freq=freq, samplesperbuffer=int(buffer_length * rate), volume=1, num_buffers=int(test_duration / buffer_length), is_live=is_live) head = pipeparts.mkcapsfilter( pipeline, head, "audio/x-raw, format=F%d%s, rate=%d, channels=2" % (width, BYTE_ORDER, rate)) head = pipeparts.mktogglecomplex(pipeline, head) if verbose: head = pipeparts.mkprogressreport(pipeline, head, "src%s" % src_suffix) return head
def lal_smoothkappas_01(pipeline, name): # # This test is to check that the inputs are smoothed in a desirable way # rate = 10 # Hz width = 64 # bytes wave = 5 freq = 0.1 # Hz volume = 0.9 buffer_length = 1.0 # seconds test_duration = 10.0 # seconds # # build pipeline # head = test_common.test_src(pipeline, channels = 2, buffer_length = buffer_length, rate = rate, width = width, test_duration = test_duration, wave = wave, freq = freq, volume = volume) head = pipeparts.mktogglecomplex(pipeline, head) head = pipeparts.mktee(pipeline, head) pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, head), "%s_in.dump" % name) median = pipeparts.mkgeneric(pipeline, head, "lal_smoothkappas", array_size = 3, maximum_offset_re = 0.5, maximum_offset_im = 0.5, default_kappa_im = 0.5, default_kappa_re = 0.5, track_bad_kappa = False, default_to_median = True) median_avg = pipeparts.mkgeneric(pipeline, head, "lal_smoothkappas", array_size = 3, avg_array_size = 2, maximum_offset_re = 0.5, maximum_offset_im = 0.5, default_kappa_im = 0.5, default_kappa_re = 0.5, track_bad_kappa = False, default_to_median = True) pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, median), "%s_median.dump" % name) pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, median_avg), "%s_median_avg.dump" % name) # # done # return pipeline
def gapped_complex_test_src(pipeline, buffer_length=1.0, rate=2048, width=64, test_duration=10.0, wave=5, freq=0, gap_frequency=None, gap_threshold=None, control_dump_filename=None, tags=None, is_live=False, verbose=True): src = complex_test_src(pipeline, buffer_length=buffer_length, rate=rate, width=width, test_duration=test_duration, wave=wave, freq=freq, is_live=is_live, verbose=verbose) if tags is not None: src = pipeparts.mktaginject(pipeline, src, tags) if gap_frequency is None: return src control = pipeparts.mkcapsfilter( pipeline, pipeparts.mkaudiotestsrc(pipeline, wave=0, freq=gap_frequency, blocksize=8 * int(buffer_length * rate), volume=1, num_buffers=int(test_duration / buffer_length)), "audio/x-raw, format=F32%s, rate=%d, channels=1" % (BYTE_ORDER, rate)) if control_dump_filename is not None: control = pipeparts.mknxydumpsinktee( pipeline, pipeparts.mkqueue(pipeline, control), control_dump_filename) control = pipeparts.mkqueue(pipeline, control) return pipeparts.mktogglecomplex( pipeline, pipeparts.mkgate(pipeline, pipeparts.mktogglecomplex(pipeline, src), control=control, threshold=gap_threshold))
def lal_constantupsample_03(pipeline, name): # # This is a simple test that the sample rates are adjusted as expected for complex data # in_rate = 1 # Hz out_rate = 10 # Hz buffer_length = 1.0 # seconds test_duration = 10.0 # seconds # # build pipeline # src = test_common.test_src(pipeline, buffer_length=buffer_length, channels=2, rate=in_rate, test_duration=test_duration, width=64) togglecomplex1 = pipeparts.mktogglecomplex(pipeline, src) capsfilter1 = pipeparts.mkcapsfilter( pipeline, togglecomplex1, "audio/x-raw, format=Z128LE, rate=%d" % int(in_rate)) tee1 = pipeparts.mktee(pipeline, capsfilter1) pipeparts.mknxydumpsink( pipeline, pipeparts.mkqueue(pipeline, pipeparts.mktogglecomplex(pipeline, tee1)), "%s_in.dump" % name) upsample = pipeparts.mkgeneric(pipeline, tee1, "lal_constantupsample") capsfilter2 = pipeparts.mkcapsfilter( pipeline, upsample, "audio/x-raw, format=Z128LE, rate=%d" % int(out_rate)) #checktimestamps = pipeparts.mkchecktimestamps(pipeline, capsfilter2) pipeparts.mknxydumpsink( pipeline, pipeparts.mkqueue(pipeline, pipeparts.mktogglecomplex(pipeline, capsfilter2)), "%s_out.dump" % name) # # done # return pipeline
def lal_insertgap_test_02(pipeline, name): # # This tests the element's treatment of complex data streams. # rate = 1000 # Hz width = 32 buffer_length = 1.0 # seconds test_duration = 100.0 # seconds gap_frequency = 0.1 # Hz gap_threshold = 0.0 control_dump_filename = "control_insertgap_test_01.dump" #bad_data_intervals = numpy.random.random((4,)).astype("float64") #bad_data_intervals2 = numpy.random.random((4,)).astype("float64") bad_data_intervals = [-1e35, -1.0, -0.5, 1e35] bad_data_intervals2 = [-1e35, 0.5, 1.0, 1e35] head = test_common.gapped_test_src( pipeline, buffer_length=buffer_length, rate=rate, width=width, channels=2, test_duration=test_duration, wave=0, freq=1, volume=1, gap_frequency=gap_frequency, gap_threshold=gap_threshold, control_dump_filename=control_dump_filename) head = pipeparts.mktogglecomplex(pipeline, head) #head = test_common.test_src(pipeline, buffer_length = buffer_length, rate = rate, width = width, channels = 1, test_duration = test_duration, wave = 5, freq = 0, volume = 1) head = pipeparts.mkgeneric(pipeline, head, "lal_insertgap", bad_data_intervals=bad_data_intervals, insert_gap=True, fill_discont=True, replace_value=3.0) head = pipeparts.mktee(pipeline, head) pipeparts.mknxydumpsink(pipeline, head, "%s_in.dump" % name) head = pipeparts.mkgeneric(pipeline, head, "lal_insertgap", bad_data_intervals=bad_data_intervals2, insert_gap=True, remove_gap=True, fill_discont=True, replace_value=7.0) pipeparts.mknxydumpsink(pipeline, head, "%s_out.dump" % name) # # done # return pipeline
def complex_pow_02(pipeline, name): buffer_length = 1.0 rate = 2048 width = 32 test_duration = 10.0 freq = 0 is_live = False src = pipeparts.mkaudiotestsrc(pipeline, wave=5, freq=freq, blocksize=8 * int(buffer_length * rate), volume=1, num_buffers=int(test_duration / buffer_length), is_live=is_live) src = pipeparts.mkcapsfilter( pipeline, src, "audio/x-raw, format=F%d%s, rate=%d, channels=1, width=%d, channel-mask=0, endianness=1234" % (width, BYTE_ORDER, rate, width)) tee = pipeparts.mktee(pipeline, src) out = pipeparts.mkgeneric(pipeline, None, "interleave") pipeparts.mkqueue(pipeline, tee).link(out) pipeparts.mkqueue(pipeline, tee).link(out) out = pipeparts.mkaudiorate(pipeline, out) mix = numpy.random.random((2, 2)).astype("float64") out = pipeparts.mkmatrixmixer(pipeline, out, matrix=mix) out = pipeparts.mktogglecomplex(pipeline, out) outtee = pipeparts.mktee(pipeline, out) pipeparts.mknxydumpsink(pipeline, outtee, "before_pow_02.dump") out = pipeparts.mkqueue(pipeline, outtee) out = pipeparts.mktogglecomplex(pipeline, out) out = pipeparts.mkgeneric(pipeline, out, "complex_pow", exponent=2) out = pipeparts.mktogglecomplex(pipeline, out) pipeparts.mknxydumpsink(pipeline, out, "after_pow_02.dump") return pipeline
def lal_demodulate_02(pipeline, name): # # This is similar to the above test, and makes sure the element treats gaps correctly # rate = 1000 # Hz buffer_length = 1.0 # seconds test_duration = 10.0 # seconds gap_frequency = 0.1 # Hz gap_threshold = 0.2 # Hz control_dump_filename = "control_demodulate_02.dump" src = test_common.gapped_test_src( pipeline, buffer_length=buffer_length, rate=rate, width=64, test_duration=test_duration, gap_frequency=gap_frequency, gap_threshold=gap_threshold, control_dump_filename=control_dump_filename) capsfilter1 = pipeparts.mkcapsfilter( pipeline, src, "audio/x-raw, format=F64LE, rate=%d" % int(rate)) tee1 = pipeparts.mktee(pipeline, capsfilter1) pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, tee1), "%s_in.dump" % name) demodulate = pipeparts.mkgeneric(pipeline, tee1, "lal_demodulate") capsfilter2 = pipeparts.mkcapsfilter( pipeline, demodulate, "audio/x-raw, format=Z128LE, rate=%d" % int(rate)) togglecomplex = pipeparts.mktogglecomplex(pipeline, capsfilter2) capsfilter3 = pipeparts.mkcapsfilter( pipeline, togglecomplex, "audio/x-raw, format=F64LE, rate=%d" % int(rate)) pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, capsfilter3), "%s_out.dump" % name) # # done # return pipeline
def lal_demodulate_01(pipeline, name): # # This test is to check that the inputs are multiplied by exp(2*pi*i*f*t) using the correct timestamps # rate = 1000 # Hz buffer_length = 1.0 # seconds test_duration = 10.0 # seconds # # build pipeline # src = test_common.test_src(pipeline, buffer_length=buffer_length, rate=rate, test_duration=test_duration, width=32) capsfilter1 = pipeparts.mkcapsfilter( pipeline, src, "audio/x-raw, format=F32LE, rate=%d" % int(rate)) tee1 = pipeparts.mktee(pipeline, capsfilter1) pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, tee1), "%s_in.dump" % name) demodulate = pipeparts.mkgeneric(pipeline, tee1, "lal_demodulate", line_frequency=100) capsfilter2 = pipeparts.mkcapsfilter( pipeline, demodulate, "audio/x-raw, format=Z64LE, rate=%d" % int(rate)) togglecomplex = pipeparts.mktogglecomplex(pipeline, capsfilter2) capsfilter3 = pipeparts.mkcapsfilter( pipeline, togglecomplex, "audio/x-raw, format=F32LE, rate=%d" % int(rate)) pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, capsfilter3), "%s_out.dump" % name) # # done # return pipeline
def single_pole_filter_test(pipeline, name, line_sep=0.5): rate = 16384 # Hz buffer_length = 1.0 # seconds test_duration = 1000 # seconds fcc_rate = 16 # Hz gain = 1.1 fcc = 430 # Hz update_time = 20 # seconds # # build pipeline # # Make a source of fake data to act as input values for a gain and a zero gain_fcc_data = test_common.test_src(pipeline, rate=fcc_rate, test_duration=test_duration, wave=5, src_suffix="_gain_fcc_data") # Take to the power of 0 to make it a stream of ones gain_fcc_data = calibration_parts.mkpow(pipeline, gain_fcc_data, exponent=0.0) # Make a copy which we can use to make both the gain and the fcc data gain_fcc_data = pipeparts.mktee(pipeline, gain_fcc_data) # Make the gain data by multiplying ones by the gain gain_data = pipeparts.mkaudioamplify(pipeline, gain_fcc_data, gain) # Make the fcc data by multiplying ones by fcc fcc_data = pipeparts.mkaudioamplify(pipeline, gain_fcc_data, fcc) # Now, this needs to be used in the element lal_adaptivefirfilt to turn it into a FIR filter. # lal_adaptivefirfilt takes as inputs (in this order) zeros, poles, a complex factor containing gain and phase. # Type "$ gst-inspect-1.0 lal_adaptivefirfilt" for info about the element. # Each of the inputs must be a complex data stream, so we first must make these real streams complex gain_data = pipeparts.mktogglecomplex( pipeline, pipeparts.mkmatrixmixer(pipeline, gain_data, matrix=[[1.0, 0.0]])) fcc_data = pipeparts.mktogglecomplex( pipeline, pipeparts.mkmatrixmixer(pipeline, fcc_data, matrix=[[1.0, 0.0]])) # Now we must interleave these streams, since lal_adaptivefirfilt takes a single multi-channel stream of interleaved data. # The fcc data (the zero frequency) must come first so that it is channel 0; that way lal_adaptivefirfilt recognizes it as such. filter_data = calibration_parts.mkinterleave(pipeline, [fcc_data, gain_data], complex_data=True) # Finally, send the interleaved data to lal_adaptivefirfilt, which will make a FIR filter. # Note that it needs to know the number of zeros and poles. # update_samples tells it how often to send a new filter to the filtering element # minimize_filter_length must be True for it to use a 2-tap filter. Otherwise, it makes a longer FIR filter using and iFFT from a frequency-domain model. # This will also write the filter coefficients to file. adaptive_invsens_filter = calibration_parts.mkadaptivefirfilt( pipeline, filter_data, update_samples=int(update_time * fcc_rate), average_samples=1, num_zeros=1, num_poles=0, filter_sample_rate=rate, minimize_filter_length=True, filename="%s_FIR_filter.txt" % name) # Now make time series source of white noise to be filtered (wave = 5 means white noise) in_signal = test_common.test_src(pipeline, rate=rate, test_duration=test_duration, wave=5, src_suffix="_in_signal") # Make a copy of input data so that we can write it to file in_signal = pipeparts.mktee(pipeline, in_signal) # Write input time series to file pipeparts.mknxydumpsink(pipeline, in_signal, "%s_in.txt" % name) # Filter the data using lal_tdwhiten, which handles smooth filter updates # The property "kernel" is the FIR filter we will update. To start, give a trivial default value. # The "taper_length" is the number of samples over which to handle filter transitions. It is set to be 1 second. out_signal = pipeparts.mkgeneric(pipeline, in_signal, "lal_tdwhiten", kernel=[0, 1], latency=0, taper_length=rate) # Hook up the adaptive filter from lal_adaptivefirfilt to lal_tdwhiten so that the filter gets updated adaptive_invsens_filter.connect("notify::adaptive-filter", calibration_parts.update_filter, out_signal, "adaptive_filter", "kernel") # Correct the 1/2-sample shift in timestamps by applying a linear-phase FIR filter # The last argument here (0.5) is the number of samples worth of timestamp advance to apply to the data. You might want to try -0.5 as well, since I often get advances and delays mixed up. out_signal = calibration_parts.linear_phase_filter(pipeline, out_signal, 0.5) # Make a copy, so that we can write the time series to file and send it to lal_transferfunction out_signal = pipeparts.mktee(pipeline, out_signal) # Finally, write the output to file pipeparts.mknxydumpsink(pipeline, out_signal, "%s_out.txt" % name) # Now, take the input and output and compute a transfer function. # First, we need to interleave the data for use by lal_transferfunction. The numerator comes first tf_input = calibration_parts.mkinterleave(pipeline, [out_signal, in_signal]) # Remove some initial samples in case they were filtered by the default dummy filter [0, 1] tf_input = calibration_parts.mkinsertgap( pipeline, tf_input, chop_length=Gst.SECOND * 50) # Removing 50 s of initial data # Send to lal_transferfunction, which will compute the frequency-domain transfer function between the input and output data and write it to file calibration_parts.mktransferfunction( pipeline, tf_input, fft_length=16 * rate, fft_overlap=8 * rate, num_ffts=(test_duration - 50) / 8 - 3, use_median=True, update_samples=1e15, filename="%s_filter_transfer_function.txt" % name) # You could, for instance, compare this transfer function to what you expect, i.e., gain * (1 + i f / fcc), and plot the comparison in the frequency-domain. I'm guessing there will be a fair amount of work involved in getting everything to work and getting the result correct. # # done # return pipeline
def peak_test_01a(pipeline, name, handler): # # try changing these. test should still work! # initial_channels = 2 rate = 2048 #Hz width = 32 sine_frequency = 1 gap_frequency = 0.1 # Hz gap_threshold = 0.7 # of 1 buffer_length = 1.0 # seconds test_duration = 10.0 # seconds peak_window = 2048 # samples wave = 0 # # build pipeline # head = test_common.gapped_test_src( pipeline, buffer_length=buffer_length, rate=rate, width=width, channels=initial_channels, test_duration=test_duration, gap_frequency=gap_frequency, gap_threshold=gap_threshold, control_dump_filename="%s_control.dump" % name) head = pipeparts.mktogglecomplex(pipeline, head) head = pipeparts.mktaginject( pipeline, head, "instrument=H1,channel-name=LSC-STRAIN,units=strain") #head = test_common.gapped_complex_test_src(pipeline, buffer_length = buffer_length, rate = in_rate, test_duration = test_duration, wave = wave, freq = sine_frequency, gap_frequency = gap_frequency, gap_threshold = gap_threshold, control_dump_filename = "itac_test_01a_control.dump", tags = "instrument=H1,channel-name=LSC-STRAIN,units=strain") #head = tee = pipeparts.mktee(pipeline, head) #pipeparts.mktrigger(pipeline, head, peak_window, "test_bank.xml") # Does not recieve EOS, hangs #pipeparts.mktrigger(pipeline, head, peak_window,autocorrelation_matrix = numpy.ones((1,21), dtype=numpy.complex)) #head = pipeparts.mkqueue(pipeline, pipeparts.mkitac(pipeline, head, peak_window, "test_bank.xml", autocorrelation_matrix = numpy.array([[0+0.j, 0+0.j, 1+1.j, 0+0.j, 0+0.j]]))) #head = pipeparts.mkprogressreport(pipeline, head, "test") # # output the before and after # #pipeparts.mknxydumpsink(pipeline, pipeparts.mkqueue(pipeline, head), "%s_out.dump" % name) #pipeparts.mkfakesink(pipeline, head) #a = pipeparts.mkappsink(pipeline, pipeparts.mkqueue(pipeline, head)) head = pipeparts.mkgeneric(pipeline, head, "lal_nxydump") sink = pipeparts.mkappsink(pipeline, head, max_buffers=1, sync=False) sink.connect("new-sample", handler.bufhandler) sink.connect("new-preroll", handler.prehandler) #outfile = open("itac_test_01a_out.dump", "w") #def dump_triggers(elem, output = outfile): # for row in SnglInspiralTable.from_buffer(elem.emit("pull-buffer")): # print >>outfile, row.end_time + row.end_time_ns*1e-9, row.snr, row.chisq, row.chisq_dof #a.connect_after("new-buffer", dump_triggers) #pipeparts.mknxydumpsink(pipeline, pipeparts.mktogglecomplex(pipeline, pipeparts.mkqueue(pipeline, tee)), "itac_test_01a_in.dump") # # done # #if "GST_DEBUG_DUMP_DOT_DIR" in os.environ: # gst.DEBUG_BIN_TO_DOT_FILE(pipeline, gst.DEBUG_GRAPH_SHOW_ALL, "peak_test_01a") return pipeline
def act2darm(pipeline, name): # Get actuation injection channels from the raw frames act_inj_channels = [] raw_data = pipeparts.mklalcachesrc(pipeline, location=options.raw_frame_cache, cache_dsc_regex=ifo) raw_data = pipeparts.mkframecppchanneldemux( pipeline, raw_data, do_file_checksum=False, skip_bad_files=True, channel_list=list(map("%s:%s".__mod__, channel_list))) for i in range(len(act_channels)): act_inj_channels.append( calibration_parts.hook_up(pipeline, raw_data, act_channels[i], ifo, 1.0)) act_inj_channels[i] = calibration_parts.caps_and_progress( pipeline, act_inj_channels[i], "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0", "act_inj_%d" % i) act_inj_channels[i] = pipeparts.mktee(pipeline, act_inj_channels[i]) # Demodulate the actuation injection channels at the lines of interest for i in range(0, len(frequencies)): demodulated_act = calibration_parts.demodulate( pipeline, act_inj_channels[i], frequencies[i], True, rate_out, filter_time, 0.5, prefactor_real=act_corrections[2 * i], prefactor_imag=act_corrections[2 * i + 1]) demodulated_act_list.append(pipeparts.mktee(pipeline, demodulated_act)) # Check if we are taking act-to-darm ratios for CALCS data for channel, label in zip(calcs_channels, labels[0:len(calcs_channels)]): calcs_deltal = calibration_parts.hook_up(pipeline, raw_data, channel, ifo, 1.0) calcs_deltal = calibration_parts.caps_and_progress( pipeline, calcs_deltal, "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0", label) calcs_deltal = pipeparts.mktee(pipeline, calcs_deltal) for i in range(0, len(frequencies)): # Demodulate DELTAL_EXTERNAL at each line demodulated_calcs_deltal = calibration_parts.demodulate( pipeline, calcs_deltal, frequencies[i], True, rate_out, filter_time, 0.5) # Take ratio \DeltaL(f) / act_injection(f) deltaL_over_act = calibration_parts.complex_division( pipeline, demodulated_calcs_deltaL, demodulated_act_list[i]) # Take a running average deltaL_over_act = pipeparts.mkgeneric(pipeline, deltaL_over_act, "lal_smoothkappas", array_size=1, avg_array_size=int( rate_out * average_time)) # Write to file pipeparts.mknxydumpsink( pipeline, deltaL_over_act, "%s_%s_over_%s_at_line%d.txt" % (ifo, label.replace(' ', '_'), act_channels[i], i + 1)) # Check if we are taking act-to-darm ratios for gstlal calibrated data if options.gstlal_channel_list is not None: cache_num = 0 for cache, channel, label in zip( gstlal_frame_cache_list, gstlal_channels, labels[len(calcs_channels):len(channel_list)]): # Get gstlal channels from the gstlal frames hoft_data = pipeparts.mklalcachesrc(pipeline, location=cache, cache_dsc_regex=ifo) hoft_data = pipeparts.mkframecppchanneldemux( pipeline, hoft_data, do_file_checksum=False, skip_bad_files=True, channel_list=list( map("%s:%s".__mod__, channel_list + TDCF_channels[cache_num] + DQ_channels))) hoft = calibration_parts.hook_up(pipeline, hoft_data, channel, ifo, 1.0, element_name_suffix="_%d" % cache_num) hoft = calibration_parts.caps_and_progress( pipeline, hoft, "audio/x-raw,format=F64LE,channels=1,channel-mask=(bitmask)0x0", label) deltal = pipeparts.mkaudioamplify(pipeline, hoft, arm_length) deltal = pipeparts.mktee(pipeline, deltal) # Get a DQ channel DQ_channel = "%sCALIB_STATE_VECTOR%s" % (chan_prefixes[cache_num], chan_suffixes[cache_num]) DQ = calibration_parts.hook_up(pipeline, hoft_data, DQ_channel, ifo, 1.0, element_name_suffix="_%d" % cache_num) DQ = calibration_parts.caps_and_progress( pipeline, DQ, "audio/x-raw,format=U32LE,channels=1,channel-mask=(bitmask)0x0", "DQ_%s" % label) DQ = pipeparts.mkgeneric(pipeline, DQ, "lal_logicalundersample", required_on=1, status_out=1) DQ = pipeparts.mkcapsfilter( pipeline, DQ, "audio/x-raw,format=U32LE,rate=%d,channels=1,channel-mask=(bitmask)0x0" % rate_out) DQ = pipeparts.mktee(pipeline, DQ) for i in range(0, len(frequencies)): # Demodulate \DeltaL at each line demodulated_deltal = calibration_parts.demodulate( pipeline, deltal, frequencies[i], True, rate_out, filter_time, 0.5) # Divide by a TDCF if needed if ('tst' in act_line_names[i] or 'esd' in act_line_names[i] ) and (apply_complex_kappatst[cache_num] or apply_kappatst[cache_num]): # Get KAPPA_TST TDCF_real = "%sCALIB_KAPPA_TST_REAL%s" % ( chan_prefixes[cache_num], chan_suffixes[cache_num]) TDCF_imag = "%sCALIB_KAPPA_TST_IMAGINARY%s" % ( chan_prefixes[cache_num], chan_suffixes[cache_num]) TDCF_real = calibration_parts.hook_up( pipeline, hoft_data, TDCF_real, ifo, 1.0, element_name_suffix="_%d" % cache_num) TDCF_imag = calibration_parts.hook_up( pipeline, hoft_data, TDCF_imag, ifo, 1.0, element_name_suffix="_%d" % cache_num) TDCF = calibration_parts.merge_into_complex( pipeline, TDCF_real, TDCF_imag) TDCF = calibration_parts.caps_and_progress( pipeline, TDCF, "audio/x-raw,format=Z128LE,channels=1,channel-mask=(bitmask)0x0", 'KAPPA_TST_%s' % label) TDCF = calibration_parts.mkresample( pipeline, TDCF, 3, False, rate_out) if not apply_complex_kappatst[cache_num]: # Only divide by the magnitude TDCF = pipeparts.mkgeneric(pipeline, TDCF, "cabs") TDCF = pipeparts.mktogglecomplex( pipeline, pipeparts.mkmatrixmixer(pipeline, TDCF, matrix=[[1.0, 0.0]])) demodulated_deltal = calibration_parts.complex_division( pipeline, demodulated_deltal, TDCF) elif 'pum' in act_line_names[i] and ( apply_complex_kappapum[cache_num] or apply_kappapum[cache_num]): # Get KAPPA_PUM TDCF_real = "%sCALIB_KAPPA_PUM_REAL%s" % ( chan_prefixes[cache_num], chan_suffixes[cache_num]) TDCF_imag = "%sCALIB_KAPPA_PUM_IMAGINARY%s" % ( chan_prefixes[cache_num], chan_suffixes[cache_num]) TDCF_real = calibration_parts.hook_up( pipeline, hoft_data, TDCF_real, ifo, 1.0, element_name_suffix="_%d" % cache_num) TDCF_imag = calibration_parts.hook_up( pipeline, hoft_data, TDCF_imag, ifo, 1.0, element_name_suffix="_%d" % cache_num) TDCF = calibration_parts.merge_into_complex( pipeline, TDCF_real, TDCF_imag) TDCF = calibration_parts.caps_and_progress( pipeline, TDCF, "audio/x-raw,format=Z128LE,channels=1,channel-mask=(bitmask)0x0", 'KAPPA_PUM_%s' % label) TDCF = calibration_parts.mkresample( pipeline, TDCF, 3, False, rate_out) if not apply_complex_kappapum[cache_num]: # Only divide by the magnitude TDCF = pipeparts.mkgeneric(pipeline, TDCF, "cabs") TDCF = pipeparts.mktogglecomplex( pipeline, pipeparts.mkmatrixmixer(pipeline, TDCF, matrix=[[1.0, 0.0]])) demodulated_deltal = calibration_parts.complex_division( pipeline, demodulated_deltal, TDCF) elif 'uim' in act_line_names[i] and ( apply_complex_kappauim[cache_num] or apply_kappauim[cache_num]): # Get KAPPA_UIM TDCF_real = "%sCALIB_KAPPA_UIM_REAL%s" % ( chan_prefixes[cache_num], chan_suffixes[cache_num]) TDCF_imag = "%sCALIB_KAPPA_UIM_IMAGINARY%s" % ( chan_prefixes[cache_num], chan_suffixes[cache_num]) TDCF_real = calibration_parts.hook_up( pipeline, hoft_data, TDCF_real, ifo, 1.0, element_name_suffix="_%d" % cache_num) TDCF_imag = calibration_parts.hook_up( pipeline, hoft_data, TDCF_imag, ifo, 1.0, element_name_suffix="_%d" % cache_num) TDCF = calibration_parts.merge_into_complex( pipeline, TDCF_real, TDCF_imag) TDCF = calibration_parts.caps_and_progress( pipeline, TDCF, "audio/x-raw,format=Z128LE,channels=1,channel-mask=(bitmask)0x0", 'KAPPA_UIM_%s' % label) TDCF = calibration_parts.mkresample( pipeline, TDCF, 3, False, rate_out) if not apply_complex_kappauim[cache_num]: # Only divide by the magnitude TDCF = pipeparts.mkgeneric(pipeline, TDCF, "cabs") TDCF = pipeparts.mktogglecomplex( pipeline, pipeparts.mkmatrixmixer(pipeline, TDCF, matrix=[[1.0, 0.0]])) demodulated_deltal = calibration_parts.complex_division( pipeline, demodulated_deltal, TDCF) # Take ratio \DeltaL(f) / act_injection(f) deltaL_over_act = calibration_parts.complex_division( pipeline, demodulated_deltal, demodulated_act_list[i]) # Take a running average deltaL_over_act = pipeparts.mkgeneric( pipeline, deltaL_over_act, "lal_smoothkappas", array_size=1, avg_array_size=int(rate_out * average_time)) # Find the magnitude deltaL_over_act = pipeparts.mktee(pipeline, deltaL_over_act) magnitude = pipeparts.mkgeneric(pipeline, deltaL_over_act, "cabs") # Find the phase phase = pipeparts.mkgeneric(pipeline, deltaL_over_act, "carg") phase = pipeparts.mkaudioamplify(pipeline, phase, 180.0 / numpy.pi) # Interleave magnitude_and_phase = calibration_parts.mkinterleave( pipeline, [magnitude, phase]) # Gate with DQ channel magnitude_and_phase = calibration_parts.mkgate( pipeline, magnitude_and_phase, DQ, 1) magnitude_and_phase = pipeparts.mkprogressreport( pipeline, magnitude_and_phase, name="progress_sink_%s_%d" % (label, i)) # Write to file pipeparts.mknxydumpsink( pipeline, magnitude_and_phase, "%s_%s_over_%s_at_%0.1fHz_%d.txt" % (ifo, label.replace(' ', '_'), act_channels[i], frequencies[i], options.gps_start_time)) cache_num = cache_num + 1 # # done # return pipeline
def mkLLOIDhoftToSnrSlices(pipeline, hoftdict, bank, control_snksrc, block_duration, verbose=False, logname="", nxydump_segment=None, fir_stride=None, control_peak_time=None, snrslices=None, reconstruction_segment_list=None): """! Build the pipeline fragment that creates the SnrSlices associated with different sample rates from hoft. @param reconstruction_segment_list A segment list object that describes when the control signal should be on. This can be useful in e.g., only reconstructing physical SNRS around the time of injections, which can save an enormous amount of CPU time. """ # # parameters # rates = sorted(bank.get_rates()) output_rate = max(rates) # work out the upsample factors for the attack and hold calculations below upsample_factor = dict( (rate, rates[i + 1] / rate) for i, rate in list(enumerate(rates))[:-1]) upsample_factor[output_rate] = 0 autocorrelation_length = bank.autocorrelation_bank.shape[1] assert autocorrelation_length % 2 == 1 autocorrelation_latency = -(autocorrelation_length - 1) / 2 # # loop over template bank slices # branch_heads = dict((rate, set()) for rate in rates) for bank_fragment in bank.bank_fragments: # The attack and hold width has three parts # # 1) The audio resampler filter: 16 comes from the size of # the audioresampler filter in samples for the next highest # rate at quality 1. Note it must then be converted to the size # at the current rate using the upsample_factor dictionary # (which is 0 if you are at the max rate). # # 2) The chisq latency. You must have at least latency number # of points before and after (at the maximum sample rate) to # compute the chisq # # 3) A fudge factor to get the width of the peak. FIXME this # is just set to 1/8th of a second peak_half_width = upsample_factor[bank_fragment.rate] * 16 + int( math.ceil(-autocorrelation_latency * (float(bank_fragment.rate) / output_rate))) + int( math.ceil(bank_fragment.rate / 8.)) branch_heads[bank_fragment.rate].add( mkLLOIDbranch( pipeline, # FIXME: the size isn't ideal: the correct value # depends on how much data is accumulated in the # firbank element, and the value here is only # approximate and not tied to the fir bank # parameters so might not work if those change pipeparts.mkqueue( pipeline, hoftdict[bank_fragment.rate], max_size_bytes=0, max_size_buffers=0, max_size_time=int( (1 * fir_stride + int(math.ceil(bank.filter_length))) * Gst.SECOND)), bank, bank_fragment, control_snksrc, peak_half_width, peak_half_width, block_duration, nxydump_segment=nxydump_segment, fir_stride=fir_stride, control_peak_time=control_peak_time, reconstruction_segment_list=reconstruction_segment_list)) # # if the calling code has requested copies of the snr # slices, sum together the highest sample rate streams and tee # them off here. this needs to be done before constructing the # adder network below in order to have access to this snr slice by # itself. if we put this off until later it'll have all the other # snrs added into it before we get a chance to tee it off # if snrslices is not None: rate, heads = output_rate, branch_heads[output_rate] if len(heads) > 1: # # this sample rate has more than one snr stream. # sum them together in an adder, which becomes the # head of the stream at this sample rate # branch_heads[rate] = pipeparts.mkadder( pipeline, (pipeparts.mkqueue(pipeline, head, max_size_bytes=0, max_size_buffers=0, max_size_time=block_duration) for head in heads)) else: # # this sample rate has only one stream. it's the # head of the stream at this sample rate # branch_heads[rate], = heads branch_heads[rate] = pipeparts.mktee(pipeline, branch_heads[rate]) snrslices[rate] = pipeparts.mktogglecomplex(pipeline, branch_heads[rate]) # # the code below expects an interable of elements # branch_heads[rate] = set([branch_heads[rate]]) # # sum the snr streams # if True: # FIXME: make conditional on time-slice \chi^{2} next_rate = dict(zip(rates, rates[1:])) else: next_rate = dict( (rate, output_rate) for rate in rates if rate != output_rate) for rate, heads in sorted(branch_heads.items()): if len(heads) > 1: # # this sample rate has more than one snr stream. # sum them together in an adder, which becomes the # head of the stream at this sample rate # branch_heads[rate] = pipeparts.mkadder(pipeline, heads) branch_heads[rate] = pipeparts.mkchecktimestamps( pipeline, branch_heads[rate], "timestamps_%s_after_%d_snr_adder" % (logname, rate)) else: # # this sample rate has only one stream. it's the # head of the stream at this sample rate # branch_heads[rate], = heads # # resample if needed # if rate in next_rate: # NOTE: quality = 1 requires that the template # slices are padded such that the Nyquist frequency # is 1.5 times the highest frequency of the time # slice. NOTE: the adder (that comes downstream of # this) isn't quite smart enough to negotiate a # common format among its upstream peers so the # capsfilter is still required. # NOTE uncomment this line to restore audioresample for # upsampling #branch_heads[rate] = pipeparts.mkcapsfilter(pipeline, pipeparts.mkresample(pipeline, branch_heads[rate], quality = 1), "audio/x-raw, rate=%d" % next_rate[rate]) branch_heads[rate] = pipeparts.mkcapsfilter( pipeline, pipeparts.mkinterpolator(pipeline, branch_heads[rate]), "audio/x-raw, rate=%d" % next_rate[rate]) branch_heads[rate] = pipeparts.mkchecktimestamps( pipeline, branch_heads[rate], "timestamps_%s_after_%d_to_%d_snr_resampler" % (logname, rate, next_rate[rate])) # # if the calling code has requested copies of the snr # slices, tee that off here. remember that we've already # got the highest sample rate slice from above # if snrslices is not None and rate != output_rate: branch_heads[rate] = pipeparts.mktee(pipeline, branch_heads[rate]) snrslices[rate] = pipeparts.mktogglecomplex( pipeline, branch_heads[rate]) # # chain to next adder if this isn't the final answer # if rate in next_rate: branch_heads[next_rate[rate]].add(branch_heads.pop(rate)) # # done # snr, = branch_heads.values() # make sure we've summed down to one stream return pipeparts.mktogglecomplex(pipeline, snr)