示例#1
0
 def is_collision_in_all_volumes(self, object_being_moved):
     state_saver = CustomStateSaver(self.problem_env.env)
     fold_arms()
     for vol in self.swept_volumes:
         if self.is_collision_in_single_volume(vol, object_being_moved):
             state_saver.Restore()
             return True
     state_saver.Restore()
     return False
示例#2
0
    def search(self):
        # returns the order of objects that respects collision at placements
        # todo if I cannot find a grasp or placement in the goal region, then I should declare infeasible problem

        init_state = CustomStateSaver(self.problem_env.env)
        # self.problem_env.set_exception_objs_when_disabling_objects_in_region(self.goal_objects)
        idx = 0
        plan = []
        goal_obj_move_plan = []

        while True:
            curr_obj = self.goal_objects[idx]

            self.problem_env.disable_objects_in_region('entire_region')
            print [o.IsEnabled() for o in self.problem_env.objects]
            curr_obj.Enable(True)
            pick = self.find_pick(curr_obj)
            if pick is None:
                plan = []  # reset the whole thing?
                goal_obj_move_plan = []
                idx += 1
                idx = idx % len(self.goal_objects)
                init_state.Restore()
                print "Pick sampling failed"
                continue
            pick.execute()

            self.problem_env.enable_objects_in_region('entire_region')
            place = self.find_place(curr_obj, pick)
            if place is None:
                plan = []
                goal_obj_move_plan = []
                idx += 1
                idx = idx % len(self.goal_objects)
                init_state.Restore()
                print "Place sampling failed"
                continue
            place.execute()

            plan.append(pick)
            plan.append(place)
            goal_obj_move_plan.append(curr_obj)

            idx += 1
            idx = idx % len(self.goal_objects)
            print "Plan length: ", len(plan)
            if len(plan) / 2.0 == len(self.goal_objects):
                break

        init_state.Restore()
        return goal_obj_move_plan, plan
    def compute_and_cache_ik_solutions(self, ikcachename):
        before = CustomStateSaver(self.problem_env.env)
        utils.open_gripper()

        # for o in self.problem_env.env.GetBodies()[2:]:
        #    o.Enable(False)
        self.problem_env.disable_objects()
        self.iksolutions = {}
        o = u'c_obst0'
        obj = self.problem_env.env.GetKinBody(o)
        if True:
            # for o, obj in self.objects.items():
            # print(o)
            self.iksolutions[o] = {r: [] for r in self.regions}
            pick_op = Operator(operator_type='one_arm_pick', discrete_parameters={'object': obj})
            pick_generator = UniformGenerator(pick_op, self.problem_env)
            pick_feasibility_checker = OneArmPickFeasibilityChecker(self.problem_env)
            for _ in range(10000):
                pick_params = pick_generator.sample_from_uniform()
                iks = []
                for r, region in self.regions.items():
                    place_op = Operator(operator_type='one_arm_place',
                                        discrete_parameters={
                                            'object': obj,
                                            'region': region})
                    place_generator = UniformGenerator(place_op, self.problem_env)

                    status = 'NoSolution'
                    for _ in range(10):
                        obj_pose = place_generator.sample_from_uniform()
                        set_obj_xytheta(obj_pose, obj)
                        set_point(obj, np.hstack([obj_pose[0:2], region.z + 0.001]))

                        params, status = pick_feasibility_checker.check_feasibility(pick_op, pick_params)

                        if status == 'HasSolution':
                            iks.append((obj.GetTransform(), params))
                            break

                    if status == 'NoSolution':
                        break

                if len(iks) == len(self.regions):
                    for r, ik in zip(self.regions, iks):
                        self.iksolutions[o][r].append(ik)

                if all(len(self.iksolutions[o][r]) >= 1000 for r in self.regions):
                    break

        # print([len(self.iksolutions[o][r]) for r in self.regions])
        self.iksolutions = self.iksolutions[o]

        # for o in self.problem_env.env.GetBodies()[2:]:
        #    o.Enable(True)
        self.problem_env.enable_objects()

        before.Restore()

        pickle.dump(self.iksolutions, open(ikcachename, 'w'))
    def search(self):
        # returns the order of objects that respects collision at placements
        # todo if I cannot find a grasp or placement in the goal region, then I should declare infeasible problem

        init_state = CustomStateSaver(self.problem_env.env)
        # self.problem_env.set_exception_objs_when_disabling_objects_in_region(self.goal_objects)
        idx = 0
        plan = []
        goal_obj_move_plan = []

        while True:
            curr_obj = self.goal_objects[idx]

            self.problem_env.disable_objects_in_region('entire_region')
            curr_obj.Enable(True)
            pap, status = self.find_pick_and_place(curr_obj)

            if pap is None:
                plan = []  # reset the whole thing?
                goal_obj_move_plan = []
                idx += 1
                idx = idx % len(self.goal_objects)
                init_state.Restore()
                self.problem_env.objects_to_check_collision = None
                print "Pick sampling failed"
                continue

            pap.execute()
            self.problem_env.set_exception_objs_when_disabling_objects_in_region([curr_obj])
            print "Pap executed"

            plan.append(pap)
            goal_obj_move_plan.append(curr_obj)

            idx += 1
            idx = idx % len(self.goal_objects)
            print "Plan length: ", len(plan)
            if len(plan) == len(self.goal_objects):
                break
        init_state.Restore()
        self.problem_env.enable_objects_in_region('entire_region')
        return goal_obj_move_plan, plan
示例#5
0
    def search(self, start_time, time_limit):
        # returns the order of objects that respects collision at placements
        # todo if I cannot find a grasp or placement in the goal region, then I should declare infeasible problem

        init_state = CustomStateSaver(self.problem_env.env)
        # self.problem_env.set_exception_objs_when_disabling_objects_in_region(self.goal_objects)
        idx = 0
        plan = []
        goal_obj_move_plan = []

        while True:
            if time.time() - start_time > time_limit:
                return None, None
            curr_obj = self.goal_objects[idx]
            self.problem_env.disable_objects_in_region('entire_region')
            print[o.IsEnabled() for o in self.problem_env.objects]
            curr_obj.Enable(True)
            pap = self.find_pap(curr_obj)
            if pap is None:
                plan = []  # reset the whole thing?
                goal_obj_move_plan = []
                idx += 1
                idx = idx % len(self.goal_objects)
                init_state.Restore()
                print "Pap sampling failed"
                continue
            pap.execute()

            plan.append(pap)
            goal_obj_move_plan.append(curr_obj)

            idx += 1
            idx = idx % len(self.goal_objects)
            print "Plan length: ", len(plan)
            if len(plan) == len(self.goal_objects):
                break

        init_state.Restore()
        return goal_obj_move_plan, plan
    def determine_collision_and_collision_free_picks(self):
        for obj, params in self.pick_params.items():
            for pp in params:
                pick_op = Operator(
                    operator_type='one_arm_pick',
                    discrete_parameters={'object': self.problem_env.env.GetKinBody(obj)},
                    continuous_parameters=pp
                )
                before = CustomStateSaver(self.problem_env.env)
                pick_op.execute()
                if not self.problem_env.env.CheckCollision(self.problem_env.robot):
                    self.nocollision_pick_op[obj] = pick_op
                    before.Restore()
                    break

                collisions = {
                    o for o in self.objects
                    if self.problem_env.env.CheckCollision(self.problem_env.env.GetKinBody(o))
                }
                if obj not in self.collision_pick_op or len(collisions) < len(self.collision_pick_op[obj][1]):
                    self.collision_pick_op[obj] = pick_op, collisions

                before.Restore()
示例#7
0
    def set_cached_place_paths(self, parent_state, moved_obj):
        motion_planner = BaseMotionPlanner(self.problem_env, 'prm')
        for region_name, region in self.problem_env.regions.items():
            if region.name == 'entire_region':
                continue
            for obj, pick_path in self.cached_pick_paths.items():
                self.cached_place_paths[(obj, region_name)] = None

                saver = CustomStateSaver(self.problem_env.env)
                pick_used = self.pick_used[obj]
                pick_used.execute()
                if region.contains(self.problem_env.env.GetKinBody(obj).ComputeAABB()):
                    path = [get_body_xytheta(self.problem_env.robot).squeeze()]
                    #self.reachable_regions_while_holding.append((obj, region_name))
                else:
                    if self.holding_collides is not None:
                        path, status = motion_planner.get_motion_plan(region, cached_collisions=self.holding_collides)
                    else:
                        # I think the trouble here is that we do not hold the object when checking collisions
                        # So, the best way to solve this problem is to not keep reachable_regions_while_holding
                        # and just use the cached path. But I am wondering how we got a colliding-path in
                        # the first place. It must be from place_in_way? No, we execute this function first,
                        # and then using the cached paths, compute the place_in_way.
                        # Also, there is something wrong with the collision checking too.
                        # I think this has to do with the fact that the collisions are computed using
                        # the robot only, not with the object in hand.
                        # So, here is what I propose:
                        #   Plan motions here, but do not add to reachable regions while holding.
                        # This way, it will plan motions as if it is not holding the object,
                        # but check collisions inside place_in_way
                        path, status = motion_planner.get_motion_plan(region,
                                                                      cached_collisions=self.collisions_at_all_obj_pose_pairs)
                    if status == 'HasSolution':
                        pass
                    else:
                        obj_not_moved = obj != moved_obj
                        parent_state_has_cached_path_for_obj = parent_state is not None \
                                                               and obj in parent_state.cached_place_paths
                        # todo: What is this logic here...?
                        #  it is about re-using the parent place path;
                        #  but this assumes that the object has not moved?
                        if parent_state_has_cached_path_for_obj and obj_not_moved:
                            path = parent_state.cached_place_paths[(obj, region_name)]
                        else:
                            path, _ = motion_planner.get_motion_plan(region, cached_collisions={})
                saver.Restore()
                # assert path is not None
                self.cached_place_paths[(obj, region_name)] = path
示例#8
0
    def get_objects_in_collision_with_given_op_inst(self, op_inst):
        saver = CustomStateSaver(self.problem_env.env)
        if len(self.problem_env.robot.GetGrabbed()) > 0:
            held = self.problem_env.robot.GetGrabbed()[0]
            release_obj()
        else:
            held = None

        fold_arms()
        new_cols = self.problem_env.get_objs_in_collision(op_inst.low_level_motion, 'entire_region')

        saver.Restore()
        if held is not None:
            grab_obj(held)

        return new_cols
    def set_cached_place_paths(self, parent_state, moved_obj):
        motion_planner = BaseMotionPlanner(self.problem_env, 'prm')
        for region_name, region in self.problem_env.regions.items():
            if region.name == 'entire_region':
                continue
            for obj, pick_path in self.cached_pick_paths.items():
                self.cached_place_paths[(obj, region_name)] = None
                parent_state_has_cached_path_for_obj \
                    = parent_state is not None and obj in parent_state.cached_place_paths and obj != moved_obj
                cached_path_is_shortest_path = parent_state is not None and \
                                               not (obj, region_name) in parent_state.reachable_regions_while_holding

                saver = CustomStateSaver(self.problem_env.env)
                pick_used = self.pick_used[obj]
                pick_used.execute()
                if region.contains(self.problem_env.env.GetKinBody(obj).ComputeAABB()):
                    path = [get_body_xytheta(self.problem_env.robot).squeeze()]
                    self.reachable_regions_while_holding.append((obj, region_name))
                else:
                    if region.name == 'home_region':
                        # a location right at the entrance of home
                        goal = [np.array([0.73064842, -2.85306871, 4.87927762])]
                    else:
                        goal = region
                    if self.holding_collides is not None:
                        path, status, start_and_prm_idxs = motion_planner.get_motion_plan(goal,
                                                                                          cached_collisions=self.holding_collides,
                                                                                          return_start_set_and_path_idxs=True)
                    else:
                        # note: self.collides is computed without holding the object.
                        path, status, start_and_prm_idxs = motion_planner.get_motion_plan(goal,
                                                                                          cached_collisions=self.collides,
                                                                                          return_start_set_and_path_idxs=True)
                    if status == 'HasSolution':
                        self.reachable_regions_while_holding.append((obj, region_name))
                    else:
                        if parent_state_has_cached_path_for_obj and cached_path_is_shortest_path:
                            path = parent_state.cached_place_paths[(obj, region_name)]
                            start_and_prm_idxs = parent_state.cached_place_start_and_prm_idxs[(obj, region_name)]
                        else:
                            path, _, start_and_prm_idxs = motion_planner.get_motion_plan(goal, cached_collisions={},
                                                                                         return_start_set_and_path_idxs=True)
                saver.Restore()
                # assert path is not None

                self.cached_place_paths[(obj, region_name)] = path
                self.cached_place_start_and_prm_idxs[(obj, region_name)] = start_and_prm_idxs
示例#10
0
    def get_binary_edge_features(self, a, b):
        if (a, b) in self.parent_binary_predicates:
            return self.parent_binary_predicates[(a, b)]
        else:
            # todo rename cached_pick_path and cached_place_path as shortest paths
            if self.use_shortest_path:
                # todo this needs to be re-computed too when we are using shortest paths, because
                #   this is true if for all b in (a,b,r), b is not in the way of shortest path to r while holidng a
                #   Since the shortest path plans a path without collision-checking, this is not an accurate computation
                if a in self.problem_env.object_names and b in self.problem_env.region_names and b != 'entire_region':
                    if a not in self.reachable_entities:
                        is_place_in_b_reachable_while_holding_a = False
                    else:
                        saver = CustomStateSaver(self.problem_env.env)
                        self.pick_used[a].execute(
                        )  # it should not be in collision
                        motion_planner = BaseMotionPlanner(
                            self.problem_env, 'prm')
                        # note that it doesn't check the collision with the object held
                        plan, status = motion_planner.get_motion_plan(
                            self.problem_env.regions[b],
                            cached_collisions=self.collides)
                        saver.Restore()
                        is_place_in_b_reachable_while_holding_a = status == 'HasSolution'
                else:
                    is_place_in_b_reachable_while_holding_a = False

            else:
                is_place_in_b_reachable_while_holding_a = (
                    a, b) in self.place_in_way.reachable_obj_region_pairs

            if self.use_shortest_path:
                if b.find('region') != -1:
                    cached_path = None
                else:
                    cached_path = self.cached_pick_paths[b]
                is_a_in_pick_path_of_b = self.pick_in_way(
                    a, b, cached_path=cached_path)
            else:
                is_a_in_pick_path_of_b = self.pick_in_way(a, b)

            return [
                self.in_region(a, b), is_a_in_pick_path_of_b,
                is_place_in_b_reachable_while_holding_a
            ]
    def visualize_place_inways(self):
        self.problem_env.env.SetViewer('qtcoin')
        for key, val in self.place_in_way.mc_path_to_entity.items():
            hold_obj_name = key[0]
            region_name = key[1]

            objs_in_way = self.place_in_way.mc_to_entity[key]
            if len(objs_in_way) > 0:
                saver = CustomStateSaver(self.problem_env.env)
                self.pick_used[hold_obj_name].execute()
                for tmp in objs_in_way:
                    set_color(self.problem_env.env.GetKinBody(tmp), [0, 0, 0])
                visualize_path(val)
                import pdb
                pdb.set_trace()

                for tmp in objs_in_way:
                    set_color(self.problem_env.env.GetKinBody(tmp), [0, 1, 0])
                saver.Restore()
示例#12
0
    def is_swept_volume_cleared(self, obj):
        saver = CustomStateSaver(self.problem_env.env)

        if len(self.problem_env.robot.GetGrabbed()) > 0:
            held = self.problem_env.robot.GetGrabbed()[0]
            release_obj()
        else:
            held = None

        collision_occurred = self.pick_swept_volume.is_collision_in_all_volumes(obj) \
                             or self.place_swept_volume.is_collision_in_all_volumes(obj)

        saver.Restore()
        if held is not None:
            grab_obj(held)

        if collision_occurred:
            return False
        else:
            return True
示例#13
0
    def sample_feasible_base_pose(self, region):
        saver = CustomStateSaver(self.problem_env.env)
        domain = get_place_domain(self.problem_env.regions[region])
        domain_min = domain[0]
        domain_max = domain[1]

        in_collision = True
        base_pose = None
        for i in range(10000):
            base_pose = np.random.uniform(domain_min, domain_max, (1, 3)).squeeze()
            set_robot_config(base_pose, self.problem_env.robot)
            in_collision = self.problem_env.env.CheckCollision(self.problem_env.robot)
            if not in_collision:
                break
        saver.Restore()

        if in_collision:
            return None
        else:
            return base_pose
示例#14
0
    def set_cached_place_paths(self, parent_state, moved_obj):
        motion_planner = BaseMotionPlanner(self.problem_env, 'prm')
        for region_name, region in self.problem_env.regions.items():
            if region.name == 'entire_region':
                continue
            for obj, pick_path in self.cached_pick_paths.items():
                self.cached_place_paths[(obj, region_name)] = None
                if not self.use_shortest_path:
                    continue
                if pick_path is None:
                    continue
                if parent_state is not None and obj in parent_state.cached_pick_paths and obj != moved_obj:
                    self.cached_place_paths[(
                        obj, region_name)] = parent_state.cached_place_paths[(
                            obj, region_name)]
                else:
                    saver = CustomStateSaver(self.problem_env.env)
                    pick_used = self.pick_used[obj]
                    pick_used.execute()
                    if region.contains(
                            self.problem_env.env.GetKinBody(
                                obj).ComputeAABB()):
                        self.cached_place_paths[(obj, region_name)] = [
                            get_body_xytheta(self.problem_env.robot).squeeze()
                        ]
                    else:
                        self.cached_place_paths[(
                            obj,
                            region_name)] = motion_planner.get_motion_plan(
                                region, cached_collisions={})[0]
                        if self.cached_place_paths[(obj, region_name)] is None:
                            import pdb
                            pdb.set_trace()

                    saver.Restore()
                try:
                    assert self.cached_place_paths[(obj,
                                                    region_name)] is not None
                except:
                    import pdb
                    pdb.set_trace()
示例#15
0
    def set_cached_place_paths(self, parent_state, moved_obj):
        motion_planner = BaseMotionPlanner(self.problem_env, 'prm')
        for region_name, region in self.problem_env.regions.items():
            if region.name == 'entire_region':
                continue
            for obj, pick_path in self.cached_pick_paths.items():
                self.cached_place_paths[(obj, region_name)] = None
                parent_state_has_cached_path_for_obj \
                    = parent_state is not None and obj in parent_state.cached_place_paths and obj != moved_obj
                cached_path_is_shortest_path = parent_state is not None and \
                                               not (obj, region_name) in parent_state.reachable_regions_while_holding

                saver = CustomStateSaver(self.problem_env.env)
                pick_used = self.pick_used[obj]
                pick_used.execute()
                if region.contains(
                        self.problem_env.env.GetKinBody(obj).ComputeAABB()):
                    path = [get_body_xytheta(self.problem_env.robot).squeeze()]
                    self.reachable_regions_while_holding.append(
                        (obj, region_name))
                else:
                    if self.holding_collides is not None:
                        path, status = motion_planner.get_motion_plan(
                            region, cached_collisions=self.holding_collides)
                    else:
                        path, status = motion_planner.get_motion_plan(
                            region, cached_collisions=self.collides)
                    if status == 'HasSolution':
                        self.reachable_regions_while_holding.append(
                            (obj, region_name))
                    else:
                        if parent_state_has_cached_path_for_obj and cached_path_is_shortest_path:
                            path = parent_state.cached_place_paths[(
                                obj, region_name)]
                        else:
                            path, _ = motion_planner.get_motion_plan(
                                region, cached_collisions={})
                saver.Restore()
                # assert path is not None
                self.cached_place_paths[(obj, region_name)] = path
                    def count_collides(papp):
                        before = CustomStateSaver(self.problem_env.env)
                        pickp, placep = papp

                        pick_op = Operator(
                            operator_type='one_arm_pick',
                            discrete_parameters={'object': self.problem_env.env.GetKinBody(obj)},
                            continuous_parameters=pickp
                        )
                        place_op = Operator(
                            operator_type='one_arm_place',
                            discrete_parameters={'object': self.problem_env.env.GetKinBody(obj),
                                                 'region': self.problem_env.regions[r]},
                            continuous_parameters=placep
                        )

                        pick_op.execute()
                        pick_collisions = sum(self.problem_env.env.CheckCollision(o) for o in self.problem_env.objects)
                        place_op.execute()
                        place_collisions = sum(self.problem_env.env.CheckCollision(o) for o in self.problem_env.objects)

                        before.Restore()
                        return pick_collisions + place_collisions
    def determine_collision_and_collision_free_places(self):
        before = CustomStateSaver(self.problem_env.env)
        for obj in self.objects:
            for r in self.regions:
                # print obj

                if len(self.pap_params[(obj, r)]) > 0:
                    def count_collides(papp):
                        before = CustomStateSaver(self.problem_env.env)
                        pickp, placep = papp

                        pick_op = Operator(
                            operator_type='one_arm_pick',
                            discrete_parameters={'object': self.problem_env.env.GetKinBody(obj)},
                            continuous_parameters=pickp
                        )
                        place_op = Operator(
                            operator_type='one_arm_place',
                            discrete_parameters={'object': self.problem_env.env.GetKinBody(obj),
                                                 'region': self.problem_env.regions[r]},
                            continuous_parameters=placep
                        )

                        pick_op.execute()
                        pick_collisions = sum(self.problem_env.env.CheckCollision(o) for o in self.problem_env.objects)
                        place_op.execute()
                        place_collisions = sum(self.problem_env.env.CheckCollision(o) for o in self.problem_env.objects)

                        before.Restore()
                        return pick_collisions + place_collisions

                    # chooses the one with minimal collisions
                    papp = min(self.pap_params[(obj, r)], key=lambda papp: count_collides(papp))
                    pickp, placep = papp
                    pick_op = Operator(
                        operator_type='one_arm_pick',
                        discrete_parameters={'object': self.problem_env.env.GetKinBody(obj)},
                        continuous_parameters=pickp
                    )
                    pick_op.execute()

                    # pap gets placed in nocollision if both pick and place have no collision
                    # otherwise it gets placed in collision, along with objects that collide with the place config (but not the pick config)

                    pick_collision = self.problem_env.env.CheckCollision(self.problem_env.robot)

                    place_op = Operator(
                        operator_type='one_arm_place',
                        discrete_parameters={'object': self.problem_env.env.GetKinBody(obj),
                                             'region': self.problem_env.regions[r]},
                        continuous_parameters=placep
                    )
                    place_op.execute()

                    place_collision = self.problem_env.env.CheckCollision(self.problem_env.robot) \
                                      or self.problem_env.env.CheckCollision(self.problem_env.env.GetKinBody(obj))

                    if not pick_collision and not place_collision:
                        self.nocollision_place_op[(obj, r)] = pick_op, place_op
                        # if obj in self.goal_entities and r in self.goal_entities:
                        #    print('successful goal pap')
                        before.Restore()
                        continue

                    collisions = {
                        o for o in self.objects
                        if self.problem_env.env.CheckCollision(self.problem_env.env.GetKinBody(o))
                    }
                    if (obj, r) not in self.collision_place_op or len(collisions) < \
                            len(self.collision_place_op[(obj, r)][1]):
                        self.collision_place_op[(obj, r)] = place_op, collisions

                    before.Restore()