示例#1
0
    def test_multi_columns_time_shift_feature(self):
        shift = Shift(shift=-2)
        df_multi = pd.DataFrame({"x0": [0, 1, 2, 3, 4, 5], "x1": [7, 8, 9, 10, 11, 12]})

        expected_df = pd.DataFrame.from_dict(
            {
                f"x0__{shift_class_name}": [2, 3, 4, 5, np.nan, np.nan],
                f"x1__{shift_class_name}": [9, 10, 11, 12, np.nan, np.nan],
            }
        )

        testing.assert_frame_equal(shift.fit_transform(df_multi), expected_df)
示例#2
0
def horizon_shift(time_series: pd.DataFrame,
                  horizon: Union[int, List[int]] = 5) -> pd.DataFrame:
    """Perform a shift of the original ``time_series`` for each time step between 1 and
    ``horizon``.

    Parameters
    ----------
    time_series : pd.DataFrame, shape (n_samples, n_features), required
        The list of ``TimeSeriesFeature`` from which to compute the feature_extraction.

    horizon : int, optional, default: ``5``
        It represents how much into the future is necessary to predict. This corresponds
        to the number of shifts that are going to be performed on y.
        
    Returns
    -------
    y : pd.DataFrame, shape (n_samples, horizon)
        The shifted time series.

    Examples
    --------
    >>> import pandas as pd
    >>> from gtime.model_selection import horizon_shift
    >>> X = pd.DataFrame(range(0, 5), index=pd.date_range("2020-01-01", "2020-01-05"))
    >>> horizon_shift(X, horizon=2)
                y_1  y_2
    2020-01-01  1.0  2.0
    2020-01-02  2.0  3.0
    2020-01-03  3.0  4.0
    2020-01-04  4.0  NaN
    2020-01-05  NaN  NaN
    >>> horizon_shift(X, horizon=[2])
                y_2
    2020-01-01  2.0
    2020-01-02  3.0
    2020-01-03  4.0
    2020-01-04  NaN
    2020-01-05  NaN

    """
    horizon = range(1, horizon + 1) if isinstance(horizon,
                                                  (int, float)) else horizon
    y = pd.DataFrame(index=time_series.index)
    for k in sorted(horizon):
        shift_feature = Shift(-k)
        y[f"y_{k}"] = shift_feature.fit_transform(time_series)

    return y
示例#3
0
    def test_random_ts_and_shifts(self, df: pd.DataFrame, shift: int):
        shift_feature = Shift(shift=shift)

        df_shifted = shift_feature.fit_transform(df)
        correct_df_shifted = self._correct_shift(df, shift)
示例#4
0
 def test_shift_transform(self, shift, expected):
     shift = Shift(shift=shift)
     testing.assert_frame_equal(shift.fit_transform(df), expected)