def test_simpleChain(self): inp = [[1]] out = [[0.412]] n = mlp(sizes=[1, 1, 1], weightGenerator=np.random.random, biasGenerator=np.random.random, activationFunction=LogSigmoid(1, -1)) train(net=n, inputs=inp, outputs=out, numEpochs=200, learningRate=0.8) assert_allclose([n.forward(i) for i in inp], out, atol=0.1)
def test_simpleFork(self): inp = [[1]] out = [[0.44, 0.77, 0.33]] n = mlp(sizes=[len(inp[0]), len(out[0])], weightGenerator=np.random.random, biasGenerator=np.random.random, activationFunction=LogSigmoid(0, 1)) train(net=n, inputs=inp, outputs=out, numEpochs=100, learningRate=0.7) assert_allclose([n.forward(i) for i in inp], out, atol=0.1)