示例#1
0
    def guided_grad_cam(self,
                        numpy_img,
                        target_pspi,
                        file_name_to_export='test',
                        save=False):
        # prep image for the network
        prep_img = torch.from_numpy(
            cv2.resize(numpy_img,
                       (200, 200))[None] / 255).float().unsqueeze_(0)
        prep_img = prep_img.requires_grad_().cuda()

        # Grad cam
        # Generate cam mask
        cam = generate_cam(self.pretrained_model, prep_img, target_pspi)

        # Guided backprop
        GBP = GuidedBackprop(self.pretrained_model)
        # Get gradients
        guided_grads = GBP.generate_gradients(prep_img, target_pspi)

        # Guided Grad cam
        cam_gb = guided_grad_cam(cam, guided_grads)
        grayscale_cam_gb = convert_to_grayscale(cam_gb)
        if save:
            save_gradient_images(cam_gb, file_name_to_export + '_GGrad_Cam')
            save_gradient_images(grayscale_cam_gb,
                                 file_name_to_export + '_GGrad_Cam_gray')
        return cam_gb, grayscale_cam_gb
示例#2
0
def vis_grad(model, class_index, layer, image_path, size=[224, 224]):
    original_image = cv2.imread(image_path, 1)
    #plt.imshow(original_image)
    #plt.show()
    prep_img = preprocess_image(original_image, size)
    file_name_to_export = 'model' + '_classindex_' + str(
        class_index) + '-layer_' + str(layer)

    # Grad cam
    gcv2 = GradCam(model, target_layer=layer)
    # Generate cam mask
    cam = gcv2.generate_cam(prep_img, class_index, size)
    print('Grad cam completed')

    # Guided backprop
    GBP = GuidedBackprop(model)
    # Get gradients
    guided_grads = GBP.generate_gradients(prep_img, class_index)
    print('Guided backpropagation completed')

    # Guided Grad cam
    cam_gb = guided_grad_cam(cam, guided_grads)
    #save_gradient_images(cam_gb, file_name_to_export + '_GGrad_Cam')
    grayscale_cam_gb = convert_to_grayscale(cam_gb)
    #save_gradient_images(grayscale_cam_gb, file_name_to_export + '_GGrad_Cam_gray')
    print('Guided grad cam completed')
    cam_gb = trans(cam_gb)
    grayscale_cam_gb = trans(grayscale_cam_gb)

    return cam_gb, grayscale_cam_gb
示例#3
0
def get_Guided_backProp(image_name, model_file, resultFile):
    k.clear_session()
    model = load_model(model_file)

    img_input = load_image(image_name)
    img_orignal = load_image(image_name)
    img_input = np.expand_dims(img_input, axis=0)

    pred = model.predict(img_input)
    class_id = np.argmax(pred, 1)
    print("Class id predicted: ", class_id)

    guided_bprop = GuidedBackprop(model)
    Guided_backProp_mask = guided_bprop.get_mask(img_orignal)
    save_image(Guided_backProp_mask, resultFile)

    k.clear_session()
    success = True
    return success
示例#4
0
    """
    cam_gb = np.multiply(grad_cam_mask, guided_backprop_mask)
    return cam_gb


if __name__ == '__main__':
    # Get params
    target_example = 0  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) =\
        get_example_params(target_example)

    # Grad cam
    # gcv2 = GradCam(pretrained_model, target_layer=11)
    gcv2 = GradCam(pretrained_model, target_layer=7)
    # Generate cam mask
    cam = gcv2.generate_cam(prep_img, target_class)
    print('Grad cam completed')

    # Guided backprop
    GBP = GuidedBackprop(pretrained_model)
    # Get gradients
    guided_grads = GBP.generate_gradients(prep_img, target_class)
    print('Guided backpropagation completed')

    # Guided Grad cam
    cam_gb = guided_grad_cam(cam, guided_grads)
    save_gradient_images(cam_gb, file_name_to_export + '_GGrad_Cam')
    grayscale_cam_gb = convert_to_grayscale(cam_gb)
    save_gradient_images(grayscale_cam_gb,
                         file_name_to_export + '_GGrad_Cam_gray')
    print('Guided grad cam completed')
示例#5
0
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])

tbCallBack = keras.callbacks.TensorBoard(log_dir='./Graph',
                                         histogram_freq=0,
                                         write_graph=True,
                                         write_images=True)

model.fit(X_train,
          y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(X_validation, y_validation),
          callbacks=[tbCallBack])
score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

g_backpropagation = GuidedBackprop(model)

current_img = X_train[10]
current_img_rs = np.reshape(current_img, (50, 50))
plt.imsave("/home/stan/Desktop/pulled_code/baby_result_og.jpg", current_img_rs)
current_mask = g_backpropagation.get_mask(current_img)
# print(current_mask)
show_image(current_mask)
    def eval(self, gradcam=False, rise=False, test_on_val=False):
        """The function for the meta-eval phase."""
        # Load the logs
        if os.path.exists(osp.join(self.args.save_path, 'trlog')):
            trlog = torch.load(osp.join(self.args.save_path, 'trlog'))
        else:
            trlog = None

        torch.manual_seed(1)
        np.random.seed(1)
        # Load meta-test set
        test_set = Dataset('val' if test_on_val else 'test', self.args)
        sampler = CategoriesSampler(test_set.label, 600, self.args.way,
                                    self.args.shot + self.args.val_query)
        loader = DataLoader(test_set,
                            batch_sampler=sampler,
                            num_workers=8,
                            pin_memory=True)

        # Set test accuracy recorder
        test_acc_record = np.zeros((600, ))

        # Load model for meta-test phase
        if self.args.eval_weights is not None:
            weights = self.addOrRemoveModule(
                self.model,
                torch.load(self.args.eval_weights)['params'])
            self.model.load_state_dict(weights)
        else:
            self.model.load_state_dict(
                torch.load(osp.join(self.args.save_path,
                                    'max_acc' + '.pth'))['params'])
        # Set model to eval mode
        self.model.eval()

        # Set accuracy averager
        ave_acc = Averager()

        # Generate labels
        label = torch.arange(self.args.way).repeat(self.args.val_query)
        if torch.cuda.is_available():
            label = label.type(torch.cuda.LongTensor)
        else:
            label = label.type(torch.LongTensor)
        label_shot = torch.arange(self.args.way).repeat(self.args.shot)
        if torch.cuda.is_available():
            label_shot = label_shot.type(torch.cuda.LongTensor)
        else:
            label_shot = label_shot.type(torch.LongTensor)

        if gradcam:
            self.model.layer3 = self.model.encoder.layer3
            model_dict = dict(type="resnet",
                              arch=self.model,
                              layer_name='layer3')
            grad_cam = GradCAM(model_dict, True)
            grad_cam_pp = GradCAMpp(model_dict, True)
            self.model.features = self.model.encoder
            guided = GuidedBackprop(self.model)
        if rise:
            self.model.layer3 = self.model.encoder.layer3
            score_mod = ScoreCam(self.model)

        # Start meta-test
        for i, batch in enumerate(loader, 1):
            if torch.cuda.is_available():
                data, _ = [_.cuda() for _ in batch]
            else:
                data = batch[0]
            k = self.args.way * self.args.shot
            data_shot, data_query = data[:k], data[k:]

            if i % 5 == 0:
                suff = "_val" if test_on_val else ""

                if self.args.rep_vec or self.args.cross_att:
                    print('batch {}: {:.2f}({:.2f})'.format(
                        i,
                        ave_acc.item() * 100, acc * 100))

                    if self.args.cross_att:
                        label_one_hot = self.one_hot(label).to(label.device)
                        _, _, logits, simMapQuer, simMapShot, normQuer, normShot = self.model(
                            (data_shot, label_shot, data_query),
                            ytest=label_one_hot,
                            retSimMap=True)
                    else:
                        logits, simMapQuer, simMapShot, normQuer, normShot, fast_weights = self.model(
                            (data_shot, label_shot, data_query),
                            retSimMap=True)

                    torch.save(
                        simMapQuer,
                        "../results/{}/{}_simMapQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        simMapShot,
                        "../results/{}/{}_simMapShot{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        data_query, "../results/{}/{}_dataQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        data_shot, "../results/{}/{}_dataShot{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        normQuer, "../results/{}/{}_normQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        normShot, "../results/{}/{}_normShot{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                else:
                    logits, normQuer, normShot, fast_weights = self.model(
                        (data_shot, label_shot, data_query),
                        retFastW=True,
                        retNorm=True)
                    torch.save(
                        normQuer, "../results/{}/{}_normQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        normShot, "../results/{}/{}_normShot{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))

                if gradcam:
                    print("Saving gradmaps", i)
                    allMasks, allMasks_pp, allMaps = [], [], []
                    for l in range(len(data_query)):
                        allMasks.append(
                            grad_cam(data_query[l:l + 1], fast_weights, None))
                        allMasks_pp.append(
                            grad_cam_pp(data_query[l:l + 1], fast_weights,
                                        None))
                        allMaps.append(
                            guided.generate_gradients(data_query[l:l + 1],
                                                      fast_weights))
                    allMasks = torch.cat(allMasks, dim=0)
                    allMasks_pp = torch.cat(allMasks_pp, dim=0)
                    allMaps = torch.cat(allMaps, dim=0)

                    torch.save(
                        allMasks, "../results/{}/{}_gradcamQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        allMasks_pp,
                        "../results/{}/{}_gradcamppQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))
                    torch.save(
                        allMaps, "../results/{}/{}_guidedQuer{}{}.th".format(
                            self.args.exp_id, self.args.model_id, i, suff))

                if rise:
                    print("Saving risemaps", i)
                    allScore = []
                    for l in range(len(data_query)):
                        allScore.append(
                            score_mod(data_query[l:l + 1], fast_weights))

            else:
                if self.args.cross_att:
                    label_one_hot = self.one_hot(label).to(label.device)
                    _, _, logits = self.model(
                        (data_shot, label_shot, data_query),
                        ytest=label_one_hot)
                else:
                    logits = self.model((data_shot, label_shot, data_query))

            acc = count_acc(logits, label)
            ave_acc.add(acc)
            test_acc_record[i - 1] = acc

        # Calculate the confidence interval, update the logs
        m, pm = compute_confidence_interval(test_acc_record)
        if trlog is not None:
            print('Val Best Epoch {}, Acc {:.4f}, Test Acc {:.4f}'.format(
                trlog['max_acc_epoch'], trlog['max_acc'], ave_acc.item()))
        print('Test Acc {:.4f} + {:.4f}'.format(m, pm))

        return m
示例#7
0
        vanilla_grads = Backprop.generate_gradients(noisy_img, target_class)
        # Add gradients to smooth_grad
        smooth_grad = smooth_grad + vanilla_grads
    # Average it out
    smooth_grad = smooth_grad / param_n
    return smooth_grad


if __name__ == '__main__':
    # Get params
    target_example = 0  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) =\
        get_example_params(target_example)

    VBP = VanillaBackprop(pretrained_model)
    GBP = GuidedBackprop(
        pretrained_model)  # if you want to use GBP dont forget to
    # change the parametre in generate_smooth_grad

    param_n = 50
    param_sigma_multiplier = 4
    smooth_grad = generate_smooth_grad(
        VBP,  # ^This parameter
        prep_img,
        target_class,
        param_n,
        param_sigma_multiplier)

    # Save colored gradients
    save_gradient_images(smooth_grad,
                         file_name_to_export + '_SmoothGrad_color')
    # Convert to grayscale
        guided_backprop_mask (np_arr):Guided backprop mask
    """
    cam_gb = np.multiply(grad_cam_mask, guided_backprop_mask)
    return cam_gb


if __name__ == '__main__':
    # Get params
    target_example = 0  # Snake
    (original_image, prep_img, target_class, file_name_to_export, pretrained_model) =\
        get_params(target_example)

    # Grad cam
    gcv2 = GradCam(pretrained_model, target_layer=11)
    # Generate cam mask
    cam = gcv2.generate_cam(prep_img, target_class)
    print('Grad cam completed')

    # Guided backprop
    GBP = GuidedBackprop(pretrained_model)
    # Get gradients
    guided_grads = GBP.generate_gradients(prep_img, target_class)
    print('Guided backpropagation completed')

    # Guided Grad cam
    cam_gb = guided_grad_cam(cam, guided_grads)
    save_gradient_images(cam_gb, file_name_to_export + '_GGrad_Cam')
    grayscale_cam_gb = convert_to_grayscale(cam_gb)
    save_gradient_images(grayscale_cam_gb, file_name_to_export + '_GGrad_Cam_gray')
    print('Guided grad cam completed')