示例#1
0
def save_model(mp_trainer, opt, step):
    if dist.get_rank() == 0:
        th.save(
            mp_trainer.master_params_to_state_dict(mp_trainer.master_params),
            os.path.join(logger.get_dir(), f"model{step:06d}.pt"),
        )
        th.save(opt.state_dict(),
                os.path.join(logger.get_dir(), f"opt{step:06d}.pt"))
示例#2
0
def main():
    args = create_argparser().parse_args()
    pprint({k:v for k,v in args.__dict__.items()})

    dist_util.setup_dist()
    logger.configure()

    logger.log("creating model...")
    pprint(args_to_dict(args, sr_model_and_diffusion_defaults().keys()))

    model, diffusion = sr_create_model_and_diffusion(
        **args_to_dict(args, sr_model_and_diffusion_defaults().keys())
    )

    # skips 
    # load_tolerant(model, args.model_path)
    model.load_state_dict(
        dist_util.load_state_dict(args.model_path, map_location="cpu")
    )
    model.to(dist_util.dev())
    if args.use_fp16:
        model.convert_to_fp16()
    model.eval()

    logger.log("loading data...")
    data = load_data_for_worker(args.base_samples, args.batch_size, args.class_cond)

    logger.log("creating samples...")
    all_images = []
    while len(all_images) * args.batch_size < args.num_samples:
        model_kwargs = next(data)
        model_kwargs = {k: v.to(dist_util.dev()) for k, v in model_kwargs.items()}
        sample = diffusion.p_sample_loop(
            model,
            (args.batch_size, 3, args.large_size, args.large_size),
            clip_denoised=args.clip_denoised,
            model_kwargs=model_kwargs,
        )
        sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
        sample = sample.permute(0, 2, 3, 1)
        sample = sample.contiguous()

        all_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
        dist.all_gather(all_samples, sample)  # gather not supported with NCCL
        for sample in all_samples:
            all_images.append(sample.cpu().numpy())
        logger.log(f"created {len(all_images) * args.batch_size} samples")

    arr = np.concatenate(all_images, axis=0)
    arr = arr[: args.num_samples]
    if dist.get_rank() == 0:
        shape_str = "x".join([str(x) for x in arr.shape])
        out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz")
        logger.log(f"saving to {out_path}")
        np.savez(out_path, arr)

    dist.barrier()
    logger.log("sampling complete")
示例#3
0
def run_bpd_evaluation(model, diffusion, data, num_samples, clip_denoised):
    all_bpd = []
    all_metrics = {"vb": [], "mse": [], "xstart_mse": []}
    num_complete = 0
    while num_complete < num_samples:
        batch, model_kwargs = next(data)
        batch = batch.to(dist_util.dev())
        model_kwargs = {
            k: v.to(dist_util.dev())
            for k, v in model_kwargs.items()
        }
        minibatch_metrics = diffusion.calc_bpd_loop(
            model,
            batch,
            clip_denoised=clip_denoised,
            model_kwargs=model_kwargs)

        for key, term_list in all_metrics.items():
            terms = minibatch_metrics[key].mean(dim=0) / dist.get_world_size()
            dist.all_reduce(terms)
            term_list.append(terms.detach().cpu().numpy())

        total_bpd = minibatch_metrics["total_bpd"]
        total_bpd = total_bpd.mean() / dist.get_world_size()
        dist.all_reduce(total_bpd)
        all_bpd.append(total_bpd.item())
        num_complete += dist.get_world_size() * batch.shape[0]

        logger.log(f"done {num_complete} samples: bpd={np.mean(all_bpd)}")

    if dist.get_rank() == 0:
        for name, terms in all_metrics.items():
            out_path = os.path.join(logger.get_dir(), f"{name}_terms.npz")
            logger.log(f"saving {name} terms to {out_path}")
            np.savez(out_path, np.mean(np.stack(terms), axis=0))

    dist.barrier()
    logger.log("evaluation complete")
示例#4
0
def main():
    args = create_argparser().parse_args()

    dist_util.setup_dist()
    logger.configure()

    logger.log("creating model and diffusion...")
    model, diffusion = create_model_and_diffusion(
        **args_to_dict(args, model_and_diffusion_defaults().keys())
    )
    model.load_state_dict(
        dist_util.load_state_dict(args.model_path, map_location="cpu")
    )
    model.to(dist_util.dev())
    if args.use_fp16:
        model.convert_to_fp16()
    model.eval()

    logger.log("sampling...")
    all_images = []
    all_labels = []
    while len(all_images) * args.batch_size < args.num_samples:
        model_kwargs = {}
        if args.class_cond:
            classes = th.randint(
                low=0, high=NUM_CLASSES, size=(args.batch_size,), device=dist_util.dev()
            )
            model_kwargs["y"] = classes
        sample_fn = (
            diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
        )
        sample = sample_fn(
            model,
            (args.batch_size, 3, args.image_size, args.image_size),
            clip_denoised=args.clip_denoised,
            model_kwargs=model_kwargs,
        )
        sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
        sample = sample.permute(0, 2, 3, 1)
        sample = sample.contiguous()

        gathered_samples = [th.zeros_like(sample) for _ in range(dist.get_world_size())]
        dist.all_gather(gathered_samples, sample)  # gather not supported with NCCL
        all_images.extend([sample.cpu().numpy() for sample in gathered_samples])
        if args.class_cond:
            gathered_labels = [
                th.zeros_like(classes) for _ in range(dist.get_world_size())
            ]
            dist.all_gather(gathered_labels, classes)
            all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
        logger.log(f"created {len(all_images) * args.batch_size} samples")

    arr = np.concatenate(all_images, axis=0)
    arr = arr[: args.num_samples]
    if args.class_cond:
        label_arr = np.concatenate(all_labels, axis=0)
        label_arr = label_arr[: args.num_samples]
    if dist.get_rank() == 0:
        shape_str = "x".join([str(x) for x in arr.shape])
        out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz")
        logger.log(f"saving to {out_path}")
        if args.class_cond:
            np.savez(out_path, arr, label_arr)
        else:
            np.savez(out_path, arr)

    dist.barrier()
    logger.log("sampling complete")
def main(**kwargs):
    args = create_argparser().parse_args()
    kw = {k: v for k, v in kwargs.items() if k in args}

    args.__dict__.update(**kw)

    dist_util.setup_dist()
    logger.configure()

    logger.log("creating model and diffusion...")
    pprint(args_to_dict(args, model_and_diffusion_defaults().keys()))

    model, diffusion = create_model_and_diffusion(
        **args_to_dict(args,
                       model_and_diffusion_defaults().keys()))
    print(f"loading state dict {args.model_path} -> model")
    model.load_state_dict(
        dist_util.load_state_dict(args.model_path, map_location="cpu"))
    model.to(dist_util.dev())
    if args.use_fp16:
        model.convert_to_fp16()
    model.eval()

    logger.log("loading classifier...")
    classifier = create_classifier(
        **args_to_dict(args,
                       classifier_defaults().keys()))
    print(f"loading state dict {args.classifier_path}")
    classifier.load_state_dict(
        dist_util.load_state_dict(args.classifier_path, map_location="cpu"))
    classifier.to(dist_util.dev())
    if args.classifier_use_fp16:
        classifier.convert_to_fp16()
    classifier.eval()

    def cond_fn(x, t, y=None):
        assert y is not None
        with th.enable_grad():
            # print(f" cond_fn(x,t,y) t {t}")
            # t, batch_size time sampling 999 -> 0
            x_in = x.detach().requires_grad_(True)
            logits = classifier(x_in, t)
            # print(f"  .. x:{x_in.shape}, t:{t.shape}, logits:{logits.shape}, y: {y.shape}")
            # x:(batch_size, channels, image_size, image_size), t:(batch_size), (batch_size, numclasses), y: (batch_size)
            log_probs = F.log_softmax(logits, dim=-1)
            selected = log_probs[range(len(logits)), y.view(-1)]
            # print(f" .. selected, softmax(logits)[range(), y] {selected}")  #  (batch_size) floats
            cond = th.autograd.grad(selected.sum(),
                                    x_in)[0] * args.classifier_scale
            # print(f" .. cond: {tuple(cond.shape)}, args.classifier_scale {args.classifier_scale}")
            # cond: (batch_size, 3, image_size, image_size), args.classifier_scale 0.5

            return cond

    def logt(x):
        if isinstance(x, th.Tensor):
            out = f" {tuple(x.shape)}"
            if x.ndim == 1:
                out += f"{x}"
        elif isinstance(x, (int, float)):
            out = f" {x}"
        return out

    def model_fn(x, t, y=None):
        assert y is not None
        print(f"timestep {t.tolist()} conditional y {y.tolist()}")
        #print(f"model_fn, x {logt(x)}, t {logt(t)} y {logt(y)}")
        return model(x, t, y if args.class_cond else None)

    logger.log("sampling...")
    all_images = []
    all_labels = []
    while len(all_images) * args.batch_size < args.num_samples:
        model_kwargs = {}
        classes = th.randint(low=0,
                             high=NUM_CLASSES,
                             size=(args.batch_size, ),
                             device=dist_util.dev())
        model_kwargs["y"] = classes
        if args.use_ddim:
            print("sample_fn = diffusion.ddim_sample_loop: args.use_ddim")
        else:
            print("sample_fn = diffusion.p_sample_loop: not args.use_ddim")
        sample_fn = (diffusion.p_sample_loop
                     if not args.use_ddim else diffusion.ddim_sample_loop)

        # print(f"sample_fn args.batch_size {args.batch_size}, args.image_size {args.image_size} args.clip_denoised {args.clip_denoised} model_kwargs {model_kwargs}")
        # model_kwargs['y']: class conditioner e.g [ 53,  37, 609, 498, 679,  38, 242, 705, 253, 822, 721, 762,  64,  42, 337, 483]
        sample = sample_fn(
            model_fn,
            (args.batch_size, 3, args.image_size, args.image_size),
            clip_denoised=args.clip_denoised,
            model_kwargs=model_kwargs,
            cond_fn=cond_fn,
            device=dist_util.dev(),
        )
        sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
        sample = sample.permute(0, 2, 3, 1)
        sample = sample.contiguous()

        gathered_samples = [
            th.zeros_like(sample) for _ in range(dist.get_world_size())
        ]
        dist.all_gather(gathered_samples,
                        sample)  # gather not supported with NCCL
        all_images.extend(
            [sample.cpu().numpy() for sample in gathered_samples])
        gathered_labels = [
            th.zeros_like(classes) for _ in range(dist.get_world_size())
        ]
        dist.all_gather(gathered_labels, classes)
        all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
        logger.log(f"created {len(all_images) * args.batch_size} samples")

    arr = np.concatenate(all_images, axis=0)
    arr = arr[:args.num_samples]
    label_arr = np.concatenate(all_labels, axis=0)
    label_arr = label_arr[:args.num_samples]
    if dist.get_rank() == 0:
        shape_str = "x".join([str(x) for x in arr.shape])
        out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz")
        logger.log(f"saving to {out_path}")
        np.savez(out_path, arr, label_arr)

    dist.barrier()
    logger.log("sampling complete")
def main():
    args = create_argparser().parse_args()

    dist_util.setup_dist()
    logger.configure()

    logger.log("creating model and diffusion...")
    model, diffusion = create_model_and_diffusion(
        **args_to_dict(args,
                       model_and_diffusion_defaults().keys()))
    model.load_state_dict(
        dist_util.load_state_dict(args.model_path, map_location="cpu"))
    model.to(dist_util.dev())
    if args.use_fp16:
        model.convert_to_fp16()
    model.eval()

    logger.log("loading classifier...")
    classifier = create_classifier(
        **args_to_dict(args,
                       classifier_defaults().keys()))
    classifier.load_state_dict(
        dist_util.load_state_dict(args.classifier_path, map_location="cpu"))
    classifier.to(dist_util.dev())
    if args.classifier_use_fp16:
        classifier.convert_to_fp16()
    classifier.eval()

    def cond_fn(x, t, y=None):
        assert y is not None
        with th.enable_grad():
            x_in = x.detach().requires_grad_(True)
            logits = classifier(x_in, t)
            log_probs = F.log_softmax(logits, dim=-1)
            selected = log_probs[range(len(logits)), y.view(-1)]
            return th.autograd.grad(selected.sum(),
                                    x_in)[0] * args.classifier_scale

    def model_fn(x, t, y=None):
        assert y is not None
        return model(x, t, y if args.class_cond else None)

    logger.log("sampling...")
    all_images = []
    all_labels = []
    while len(all_images) * args.batch_size < args.num_samples:
        model_kwargs = {}
        classes = th.randint(low=0,
                             high=NUM_CLASSES,
                             size=(args.batch_size, ),
                             device=dist_util.dev())
        model_kwargs["y"] = classes
        sample_fn = (diffusion.p_sample_loop
                     if not args.use_ddim else diffusion.ddim_sample_loop)
        sample = sample_fn(
            model_fn,
            (args.batch_size, 3, args.image_size, args.image_size),
            clip_denoised=args.clip_denoised,
            model_kwargs=model_kwargs,
            cond_fn=cond_fn,
            device=dist_util.dev(),
        )
        sample = ((sample + 1) * 127.5).clamp(0, 255).to(th.uint8)
        sample = sample.permute(0, 2, 3, 1)
        sample = sample.contiguous()

        gathered_samples = [
            th.zeros_like(sample) for _ in range(dist.get_world_size())
        ]
        dist.all_gather(gathered_samples,
                        sample)  # gather not supported with NCCL
        all_images.extend(
            [sample.cpu().numpy() for sample in gathered_samples])
        gathered_labels = [
            th.zeros_like(classes) for _ in range(dist.get_world_size())
        ]
        dist.all_gather(gathered_labels, classes)
        all_labels.extend([labels.cpu().numpy() for labels in gathered_labels])
        logger.log(f"created {len(all_images) * args.batch_size} samples")

    arr = np.concatenate(all_images, axis=0)
    arr = arr[:args.num_samples]
    label_arr = np.concatenate(all_labels, axis=0)
    label_arr = label_arr[:args.num_samples]
    if dist.get_rank() == 0:
        shape_str = "x".join([str(x) for x in arr.shape])
        out_path = os.path.join(logger.get_dir(), f"samples_{shape_str}.npz")
        logger.log(f"saving to {out_path}")
        np.savez(out_path, arr, label_arr)

    dist.barrier()
    logger.log("sampling complete")