示例#1
0
def waitforfinalstatus(batchID):
    # Wait no longer than one hour
    maxwaittime = 3600

    # Setup and start environment, create local Batch handle object
    with setupbatchenv().start() as env, gp.Batch(batchID, env) as batch:

        starttime = time.time()
        while batch.BatchStatus == GRB.BATCH_SUBMITTED:
            # Abort this batch if it is taking too long
            curtime = time.time()
            if curtime - starttime > maxwaittime:
                batch.abort()
                break

            # Wait for two seconds
            time.sleep(2)

            # Update the resident attribute cache of the Batch object with the
            # latest values from the cluster manager.
            batch.update()

            # If the batch failed, we retry it
            if batch.BatchStatus == GRB.BATCH_FAILED:
                batch.retry()

        # Print information about error status of the job that processed the batch
        printbatcherrorinfo(batch)
示例#2
0
def printfinalreport(batchID):
    # Setup and start environment, create local Batch handle object
    with setupbatchenv().start() as env, gp.Batch(batchID, env) as batch:
        if batch.BatchStatus == GRB.BATCH_CREATED:
            print("Batch status is 'CREATED'")
        elif batch.BatchStatus == GRB.BATCH_SUBMITTED:
            print("Batch is 'SUBMITTED")
        elif batch.BatchStatus == GRB.BATCH_ABORTED:
            print("Batch is 'ABORTED'")
        elif batch.BatchStatus == GRB.BATCH_FAILED:
            print("Batch is 'FAILED'")
        elif batch.BatchStatus == GRB.BATCH_COMPLETED:
            print("Batch is 'COMPLETED'")
            print("JSON solution:")
            # Get JSON solution as string, create dict from it
            sol = json.loads(batch.getJSONSolution())

            # Pretty printing the general solution information
            print(json.dumps(sol["SolutionInfo"], indent=4))

            # Write the full JSON solution string to a file
            batch.writeJSONSolution('batch-sol.json.gz')
        else:
            # Should not happen
            print("Batch has unknown BatchStatus")

        printbatcherrorinfo(batch)
示例#3
0
def batchdiscard(batchID):
    # Setup and start environment, create local Batch handle object
    with setupbatchenv().start() as env, gp.Batch(batchID, env) as batch:
        # Remove batch request from manager
        batch.discard()
示例#4
0
        workers = ", ".join(schedule[k])
        print(" - {:10} {:>5}: {}".format(day, time, workers))


if __name__ == '__main__':
    # Create Cluster Manager environment in batch mode.
    env = gp.Env(empty=True)
    env.setParam('CSBatchMode', 1)

    # env is a context manager; upon leaving, Env.dispose() is called
    with env.start():
        # Submit the assignment problem to the cluster manager, get batch ID
        batchID = submit_assigment_problem(env)

        # Create a batch object, wait for batch to complete, query solution JSON
        with gp.Batch(batchID, env) as batch:
            waitforfinalbatchstatus(batch)

            if batch.BatchStatus != GRB.BATCH_COMPLETED:
                print("Batch request couldn't be completed")
                sys.exit(0)

            jsonsol = batch.getJSONSolution()

    # Dump JSON solution string into a dict
    soldict = json.loads(jsonsol)

    # Has the assignment problem been solved as expected?
    if soldict['SolutionInfo']['Status'] != GRB.OPTIMAL:
        # Shouldn't happen...
        print("Assignment problem could  not be solved to optimality")