8] idx = np.argmax(loglikelihood) t0_best, mej_1_best, vej_1_best, Xlan_1_best, mej_2_best, vej_2_best, Xlan_2_best, zp_best = data[ idx, 0], 10**data[idx, 1], data[idx, 2], 10**data[idx, 3], 10**data[ idx, 4], data[idx, 5], 10**data[idx, 6], data[idx, 7] if opts.doAbsorption: t_best, lambdas_best, spec_best = Ka2017x2_model_spec_ejecta_absorption( mej_1_best, vej_1_best, Xlan_1_best, mej_2_best, vej_2_best, Xlan_2_best) else: t_best, lambdas_best, spec_best = Ka2017x2_model_spec_ejecta( mej_1_best, vej_1_best, Xlan_1_best, mej_2_best, vej_2_best, Xlan_2_best) truths = lightcurve_utils.get_truths(opts.name, opts.model, n_params, True) pcklFile = os.path.join(plotDir, "data.pkl") f = open(pcklFile, 'wb') pickle.dump((data_out, data, t_best, lambdas_best, spec_best, t0_best, zp_best, n_params, labels, truths), f) f.close() if n_params >= 8: title_fontsize = 26 label_fontsize = 30 else: title_fontsize = 24 label_fontsize = 28 plotName = "%s/corner.pdf" % (plotDir)
svd_mag_color_model = pickle.load(handle) Global.svd_mag_color_model = svd_mag_color_model elif opts.model in ["Ka2017x2inc", "Ka2017x3inc"]: Global.svd_mag_color_models = [] for colorm in colormodel: if colorm == "a1.0": Global.svd_mag_color_models.append("a1.0") else: modelfile = os.path.join(ModelPath, '%s.pkl' % colorm) with open(modelfile, 'rb') as handle: svd_mag_color_model = pickle.load(handle) Global.svd_mag_color_models.append(svd_mag_color_model) data, tmag, lbol, mag, t0_best, zp_best, n_params, labels, best = run.multinest( opts, plotDir) truths = lightcurve_utils.get_truths(opts.name, opts.model, n_params, opts.doEjecta) pcklFile = os.path.join(plotDir, "data.pkl") f = open(pcklFile, 'wb') pickle.dump((data_out, data, tmag, lbol, mag, t0_best, zp_best, n_params, labels, best, truths), f) f.close() if n_params >= 6: title_fontsize = 36 label_fontsize = 36 else: title_fontsize = 30 label_fontsize = 30 plotName = "%s/corner.pdf" % (plotDir)