class PriceJump(Env): metadata = {'render.modes': ['human']} id = 'long-short-v0' # Turn to true if Bitifinex is in the dataset (e.g., include_bitfinex=True) features = Sim.get_feature_labels(include_system_time=False, include_bitfinex=False) best_bid_index = features.index('coinbase-bid-distance-0') best_ask_index = features.index('coinbase-ask-distance-0') notional_bid_index = features.index('coinbase-bid-notional-0') notional_ask_index = features.index('coinbase-ask-notional-0') buy_trade_index = features.index('coinbase-buys') sell_trade_index = features.index('coinbase-sells') target_pnl = BROKER_FEE * 10 * 5 # e.g., 5 for max_positions fee = BROKER_FEE def __init__(self, *, fitting_file='ETH-USD_2018-12-31.xz', testing_file='ETH-USD_2019-01-01.xz', step_size=1, max_position=5, window_size=10, seed=1, action_repeats=10, training=True, format_3d=False, z_score=True): # properties required for instantiation self.action_repeats = action_repeats self._seed = seed self._random_state = np.random.RandomState(seed=self._seed) self.training = training self.step_size = step_size self.max_position = max_position self.window_size = window_size self.format_3d = format_3d # e.g., [window, features, *NEW_AXIS*] self.action = 0 # derive gym.env properties self.actions = np.eye(3) self.sym = testing_file[:7] # slice the CCY from the filename # properties that get reset() self.reward = 0.0 self.done = False self.local_step_number = 0 self.midpoint = 0.0 self.observation = None # get Broker class to keep track of PnL and orders self.broker = Broker(max_position=max_position) # get historical data for simulations self.sim = Sim(use_arctic=False) self.data = self._load_environment_data(fitting_file, testing_file) self.prices_ = self.data[ 'coinbase_midpoint'].values # used to calculate PnL self.normalized_data = self.data.copy() self.data = self.data.values self.max_steps = self.data.shape[0] - self.step_size * \ self.action_repeats - 1 # normalize midpoint data self.normalized_data['coinbase_midpoint'] = \ np.log(self.normalized_data['coinbase_midpoint'].values) self.normalized_data['coinbase_midpoint'] = ( self.normalized_data['coinbase_midpoint'] - self.normalized_data['coinbase_midpoint'].shift(1)).fillna(0.) # load indicators into the indicator manager self.tns = IndicatorManager() self.rsi = IndicatorManager() for window in INDICATOR_WINDOW: self.tns.add(('tns_{}'.format(window), TnS(window=window))) self.rsi.add(('rsi_{}'.format(window), RSI(window=window))) if z_score: logger.info("Pre-scaling {}-{} data...".format( self.sym, self._seed)) self.normalized_data = self.normalized_data.apply(self.sim.z_score, axis=1).values logger.info("...{}-{} pre-scaling complete.".format( self.sym, self._seed)) else: self.normalized_data = self.normalized_data.values # rendering class self._render = TradingGraph(sym=self.sym) # graph midpoint prices self._render.reset_render_data( y_vec=self.prices_[:np.shape(self._render.x_vec)[0]]) # buffer for appending lags self.data_buffer = list() self.action_space = spaces.Discrete(len(self.actions)) self.reset() # reset to load observation.shape self.observation_space = spaces.Box(low=-10, high=10, shape=self.observation.shape, dtype=np.float32) print( '{} PriceJump #{} instantiated.\nself.observation_space.shape : {}' .format(self.sym, self._seed, self.observation_space.shape)) def __str__(self): return '{} | {}-{}'.format(PriceJump.id, self.sym, self._seed) def step(self, action: int): for current_step in range(self.action_repeats): if self.done: self.reset() return self.observation, self.reward, self.done # reset the reward if there ARE action repeats if current_step == 0: self.reward = 0. step_action = action else: step_action = 0 # Get current step's midpoint self.midpoint = self.prices_[self.local_step_number] # Pass current time step midpoint to broker to calculate PnL, # or if any open orders are to be filled buy_volume = self._get_book_data(PriceJump.buy_trade_index) sell_volume = self._get_book_data(PriceJump.sell_trade_index) self.tns.step(buys=buy_volume, sells=sell_volume) self.rsi.step(price=self.midpoint) self.broker.step(midpoint=self.midpoint) self.reward += self._send_to_broker_and_get_reward( action=step_action) step_observation = self._get_step_observation(action=action) self.data_buffer.append(step_observation) if len(self.data_buffer) > self.window_size: del self.data_buffer[0] self.local_step_number += self.step_size self.observation = self._get_observation() if self.local_step_number > self.max_steps: self.done = True order = Order(ccy=self.sym, side=None, price=self.midpoint, step=self.local_step_number) self.reward = self.broker.flatten_inventory(order=order) return self.observation, self.reward, self.done, {} def reset(self): if self.training: self.local_step_number = self._random_state.randint( low=1, high=self.data.shape[0] // 4) else: self.local_step_number = 0 msg = ' {}-{} reset. Episode pnl: {:.4f} with {} trades | First step: {}'.format( self.sym, self._seed, self.broker.get_total_pnl(midpoint=self.midpoint), self.broker.get_total_trade_count(), self.local_step_number) logger.info(msg) self.reward = 0.0 self.done = False self.broker.reset() self.data_buffer.clear() self.rsi.reset() self.tns.reset() for step in range(self.window_size + INDICATOR_WINDOW_MAX): self.midpoint = self.prices_[self.local_step_number] step_buy_volume = self._get_book_data(PriceJump.buy_trade_index) step_sell_volume = self._get_book_data(PriceJump.sell_trade_index) self.tns.step(buys=step_buy_volume, sells=step_sell_volume) self.rsi.step(price=self.midpoint) step_observation = self._get_step_observation(action=0) self.data_buffer.append(step_observation) self.local_step_number += self.step_size if len(self.data_buffer) > self.window_size: del self.data_buffer[0] self.observation = self._get_observation() return self.observation def render(self, mode='human'): self._render.render(midpoint=self.midpoint, mode=mode) def close(self): logger.info('{}-{} is being closed.'.format(self.id, self.sym)) self.data = None self.normalized_data = None self.prices_ = None self.broker = None self.sim = None self.data_buffer = None self.tns = None self.rsi = None return def seed(self, seed=1): self._random_state = np.random.RandomState(seed=seed) self._seed = seed logger.info('Setting seed in PriceJump.seed({})'.format(seed)) return [seed] @staticmethod def _process_data(_next_state): return np.clip(_next_state.reshape((1, -1)), -10., 10.) # def _process_data(self, _next_state): # # return self.sim.scale_state(_next_state).values.reshape((1, -1)) # return np.reshape(_next_state, (1, -1)) def _send_to_broker_and_get_reward(self, action): reward = 0.0 discouragement = 0.000000000001 if action == 0: # do nothing reward += discouragement elif action == 1: # buy price_fee_adjusted = self.midpoint + (PriceJump.fee * self.midpoint) if self.broker.short_inventory_count > 0: order = Order(ccy=self.sym, side='short', price=price_fee_adjusted, step=self.local_step_number) self.broker.remove(order=order) reward += self.broker.get_reward(side=order.side) elif self.broker.long_inventory_count >= 0: order = Order(ccy=self.sym, side='long', price=price_fee_adjusted, step=self.local_step_number) if self.broker.add(order=order) is False: reward -= discouragement else: logger.info( ('gym_trading.get_reward() ' + 'Error for action #{} - ' + 'unable to place an order with broker').format(action)) elif action == 2: # sell price_fee_adjusted = self.midpoint - (PriceJump.fee * self.midpoint) if self.broker.long_inventory_count > 0: order = Order(ccy=self.sym, side='long', price=price_fee_adjusted, step=self.local_step_number) self.broker.remove(order=order) reward += self.broker.get_reward(side=order.side) elif self.broker.short_inventory_count >= 0: order = Order(ccy=self.sym, side='short', price=price_fee_adjusted, step=self.local_step_number) if self.broker.add(order=order) is False: reward -= discouragement else: logger.info( 'gym_trading.get_reward() ' + 'Error for action #{} - ' + 'unable to place an order with broker'.format(action)) else: logger.info( ('Unknown action to take in get_reward(): ' + 'action={} | midpoint={}').format(action, self.midpoint)) return reward def _create_position_features(self): return np.array( (self.broker.long_inventory.position_count / self.max_position, self.broker.short_inventory.position_count / self.max_position, self.broker.get_total_pnl(midpoint=self.midpoint) / PriceJump.target_pnl, self.broker.long_inventory.get_unrealized_pnl(self.midpoint) / self.broker.reward_scale, self.broker.short_inventory.get_unrealized_pnl(self.midpoint) / self.broker.reward_scale), dtype=np.float32) def _create_action_features(self, action): return self.actions[action] def _create_indicator_features(self): return np.array((*self.tns.get_value(), *self.rsi.get_value()), dtype=np.float32) def _get_nbbo(self): best_bid = round( self.midpoint - self._get_book_data(PriceJump.best_bid_index), 2) best_ask = round( self.midpoint + self._get_book_data(PriceJump.best_ask_index), 2) return best_bid, best_ask def _get_book_data(self, index=0): return self.data[self.local_step_number][index] def _get_step_observation(self, action=0): step_position_features = self._create_position_features() step_action_features = self._create_action_features(action=action) step_indicator_features = self._create_indicator_features() return np.concatenate( (self._process_data(self.normalized_data[self.local_step_number]), step_indicator_features, step_position_features, step_action_features, np.array([self.reward])), axis=None) def _get_observation(self): observation = np.array(self.data_buffer, dtype=np.float32) # Expand the observation space from 2 to 3 dimensions. # This is necessary for conv nets in Baselines. if self.format_3d: observation = np.expand_dims(observation, axis=-1) return observation def _load_environment_data(self, fitting_file, testing_file): fitting_data_filepath = '{}/data_exports/{}'.format( self.sim.cwd, fitting_file) data_used_in_environment = '{}/data_exports/{}'.format( self.sim.cwd, testing_file) fitting_data = self.sim.import_csv(filename=fitting_data_filepath) fitting_data['coinbase_midpoint'] = np.log( fitting_data['coinbase_midpoint'].values) fitting_data['coinbase_midpoint'] = ( fitting_data['coinbase_midpoint'] - fitting_data['coinbase_midpoint'].shift(1)).fillna(method='bfill') self.sim.fit_scaler(fitting_data) del fitting_data return self.sim.import_csv(filename=data_used_in_environment)
class PriceJump(Env): metadata = {'render.modes': ['human']} id = 'long-short-v0' # Turn to true if Bitifinex is in the dataset (e.g., include_bitfinex=True) features = Sim.get_feature_labels(include_system_time=False, include_bitfinex=False) best_bid_index = features.index('coinbase_bid_distance_0') best_ask_index = features.index('coinbase_ask_distance_0') notional_bid_index = features.index('coinbase_bid_notional_0') notional_ask_index = features.index('coinbase_ask_notional_0') buy_trade_index = features.index('coinbase_buys') sell_trade_index = features.index('coinbase_sells') target_pnl = 0.03 # 3.0% gain per episode (i.e., day) fee = MARKET_ORDER_FEE def __init__(self, *, fitting_file='LTC-USD_2019-04-07.csv.xz', testing_file='LTC-USD_2019-04-08.csv.xz', step_size=1, max_position=5, window_size=10, seed=1, action_repeats=10, training=True, format_3d=False, z_score=True): # properties required for instantiation self.action_repeats = action_repeats self._seed = seed self._random_state = np.random.RandomState(seed=self._seed) self.training = training self.step_size = step_size self.max_position = max_position self.window_size = window_size self.format_3d = format_3d # e.g., [window, features, *NEW_AXIS*] self.action = 0 # derive gym.env properties self.actions = np.eye(3, dtype=np.float32) self.sym = testing_file[:7] # slice the CCY from the filename # properties that get reset() self.reward = 0.0 self.done = False self.local_step_number = 0 self.midpoint = 0.0 self.observation = None # get Broker class to keep track of PnL and orders self.broker = Broker(max_position=max_position) # get historical data for simulations self.sim = Sim(use_arctic=False, z_score=z_score) self.prices_, self.data, self.normalized_data = self.sim.load_environment_data( fitting_file, testing_file) self.max_steps = self.data.shape[0] - self.step_size * \ self.action_repeats - 1 # load indicators into the indicator manager self.tns = IndicatorManager() self.rsi = IndicatorManager() for window in INDICATOR_WINDOW: self.tns.add(('tns_{}'.format(window), TnS(window=window))) self.rsi.add(('rsi_{}'.format(window), RSI(window=window))) # rendering class self._render = TradingGraph(sym=self.sym) # graph midpoint prices self._render.reset_render_data( y_vec=self.prices_[:np.shape(self._render.x_vec)[0]]) # buffer for appending lags self.data_buffer = list() self.action_space = spaces.Discrete(len(self.actions)) self.reset() # reset to load observation.shape self.observation_space = spaces.Box(low=-10, high=10, shape=self.observation.shape, dtype=np.float32) print( '{} PriceJump #{} instantiated.\nself.observation_space.shape : {}' .format(self.sym, self._seed, self.observation_space.shape)) def __str__(self): return '{} | {}-{}'.format(PriceJump.id, self.sym, self._seed) def step(self, action: int): for current_step in range(self.action_repeats): if self.done: self.reset() return self.observation, self.reward, self.done # reset the reward if there ARE action repeats if current_step == 0: self.reward = 0. step_action = action else: step_action = 0 # Get current step's midpoint self.midpoint = self.prices_[self.local_step_number] # Pass current time step midpoint to broker to calculate PnL, # or if any open orders are to be filled buy_volume = self._get_book_data(PriceJump.buy_trade_index) sell_volume = self._get_book_data(PriceJump.sell_trade_index) self.tns.step(buys=buy_volume, sells=sell_volume) self.rsi.step(price=self.midpoint) self.broker.step(midpoint=self.midpoint) self.reward += self._send_to_broker_and_get_reward( action=step_action) step_observation = self._get_step_observation(action=action) self.data_buffer.append(step_observation) if len(self.data_buffer) > self.window_size: del self.data_buffer[0] self.local_step_number += self.step_size self.observation = self._get_observation() if self.local_step_number > self.max_steps: self.done = True order = Order(ccy=self.sym, side=None, price=self.midpoint, step=self.local_step_number) self.reward = self.broker.flatten_inventory(order=order) return self.observation, self.reward, self.done, {} def reset(self): if self.training: self.local_step_number = self._random_state.randint( low=1, high=self.data.shape[0] // 4) else: self.local_step_number = 0 msg = ' {}-{} reset. Episode pnl: {:.4f} with {} trades. First step: {}'.format( self.sym, self._seed, self.broker.get_total_pnl(midpoint=self.midpoint), self.broker.get_total_trade_count(), self.local_step_number) logger.info(msg) self.reward = 0.0 self.done = False self.broker.reset() self.data_buffer.clear() self.rsi.reset() self.tns.reset() for step in range(self.window_size + INDICATOR_WINDOW_MAX): self.midpoint = self.prices_[self.local_step_number] step_buy_volume = self._get_book_data(PriceJump.buy_trade_index) step_sell_volume = self._get_book_data(PriceJump.sell_trade_index) self.tns.step(buys=step_buy_volume, sells=step_sell_volume) self.rsi.step(price=self.midpoint) step_observation = self._get_step_observation(action=0) self.data_buffer.append(step_observation) self.local_step_number += self.step_size if len(self.data_buffer) > self.window_size: del self.data_buffer[0] self.observation = self._get_observation() return self.observation def render(self, mode='human'): self._render.render(midpoint=self.midpoint, mode=mode) def close(self): logger.info('{}-{} is being closed.'.format(self.id, self.sym)) self.data = None self.normalized_data = None self.prices_ = None self.broker = None self.sim = None self.data_buffer = None self.tns = None self.rsi = None return def seed(self, seed=1): self._random_state = np.random.RandomState(seed=seed) self._seed = seed logger.info('Setting seed in PriceJump.seed({})'.format(seed)) return [seed] @staticmethod def _process_data(_next_state): """ Reshape observation and clip outliers (values +/- 10) :param _next_state: observation space :return: (np.array) clipped observation space """ return np.clip(_next_state.reshape((1, -1)), -10., 10.) def _send_to_broker_and_get_reward(self, action: int): """ Create or adjust orders per a specified action and adjust for penalties. :param action: (int) current step's action :return: (float) reward """ reward = 0.0 discouragement = 0.000000000001 if action == 0: # do nothing reward += discouragement elif action == 1: # buy price_fee_adjusted = self.midpoint + (PriceJump.fee * self.midpoint) if self.broker.short_inventory_count > 0: order = Order(ccy=self.sym, side='short', price=price_fee_adjusted, step=self.local_step_number) self.broker.remove(order=order) reward += self.broker.get_reward(side=order.side) / \ self.broker.reward_scale # scale realized PnL elif self.broker.long_inventory_count >= 0: order = Order(ccy=self.sym, side='long', price=price_fee_adjusted, step=self.local_step_number) if self.broker.add(order=order) is False: reward -= discouragement else: logger.info( ('gym_trading.get_reward() ' + 'Error for action #{} - ' + 'unable to place an order with broker').format(action)) elif action == 2: # sell price_fee_adjusted = self.midpoint - (PriceJump.fee * self.midpoint) if self.broker.long_inventory_count > 0: order = Order(ccy=self.sym, side='long', price=price_fee_adjusted, step=self.local_step_number) self.broker.remove(order=order) reward += self.broker.get_reward(side=order.side) / \ self.broker.reward_scale # scale realized PnL elif self.broker.short_inventory_count >= 0: order = Order(ccy=self.sym, side='short', price=price_fee_adjusted, step=self.local_step_number) if self.broker.add(order=order) is False: reward -= discouragement else: logger.info( ('gym_trading.get_reward() ' + 'Error for action #{} - ' + 'unable to place an order with broker').format(action)) else: logger.info( ('Unknown action to take in get_reward(): ' + 'action={} | midpoint={}').format(action, self.midpoint)) return reward def _create_position_features(self): """ Create an array with features related to the agent's inventory :return: (np.array) normalized position features """ return np.array( (self.broker.long_inventory.position_count / self.max_position, self.broker.short_inventory.position_count / self.max_position, self.broker.get_total_pnl(midpoint=self.midpoint) / PriceJump.target_pnl, self.broker.long_inventory.get_unrealized_pnl(self.midpoint) / self.broker.reward_scale, self.broker.short_inventory.get_unrealized_pnl(self.midpoint) / self.broker.reward_scale), dtype=np.float32) def _create_action_features(self, action): """ Create a features array for the current time step's action. :param action: (int) action number :return: (np.array) One-hot of current action """ return self.actions[action] def _create_indicator_features(self): """ Create features vector with environment indicators. :return: (np.array) Indicator values for current time step """ return np.array((*self.tns.get_value(), *self.rsi.get_value()), dtype=np.float32) def _get_nbbo(self): """ Get best bid and offer :return: (tuple) best bid and offer """ best_bid = round( self.midpoint - self._get_book_data(PriceJump.best_bid_index), 2) best_ask = round( self.midpoint + self._get_book_data(PriceJump.best_ask_index), 2) return best_bid, best_ask def _get_book_data(self, index=0): """ Return step 'n' of order book snapshot data :param index: (int) step 'n' to look up in order book snapshot history :return: (np.array) order book snapshot vector """ return self.data[self.local_step_number][index] def _get_step_observation(self, action=0): """ Current step observation, NOT including historical data. :param action: (int) current step action :return: (np.array) Current step observation """ step_position_features = self._create_position_features() step_action_features = self._create_action_features(action=action) step_indicator_features = self._create_indicator_features() return np.concatenate( (self._process_data(self.normalized_data[self.local_step_number]), step_indicator_features, step_position_features, step_action_features, np.array([self.reward])), axis=None) def _get_observation(self): """ Current step observation, including historical data. If format_3d is TRUE: Expand the observation space from 2 to 3 dimensions. (note: This is necessary for conv nets in Baselines.) :return: (np.array) Observation state for current time step """ observation = np.array(self.data_buffer, dtype=np.float32) if self.format_3d: observation = np.expand_dims(observation, axis=-1) return observation