class FooCarEnv(gym.Env): _channel = EnvironmentParametersChannel() PathSpace = { 'xyz': 0, 'xy': 2, 'yz': 2, 'xz': 2 } def __init__(self, no_graphics:bool=False, seed:int=1, **config): self._config = config worker_id = 0 if 'worker_id' in config: worker_id = config['worker_id'] self._unity_env = UnityEnvironment( file_name=UNITY_ENV_EXE_FILE, # file_name=None, # Unity Editor Mode (debug) no_graphics=no_graphics, seed=seed, side_channels=[self._channel], worker_id=worker_id ) for key, value in config.items(): self._channel.set_float_parameter(key, float(value)) self._gym_env = UnityToGymWrapper(self._unity_env) def step(self, action): obs, reward, done, info = self._gym_env.step(action) size = self.observation_size return obs[:size], reward, done, info def reset(self): obs = self._gym_env.reset() size = self.observation_size return obs[:size] def render(self, mode="rgb_array"): return self._gym_env.render(mode=mode) def seed(self, seed=None): self._gym_env.seed(seed=seed) # it will throw a warning def close(self): self._gym_env.close() @property def metadata(self): return self._gym_env.metadata @property def reward_range(self) -> Tuple[float, float]: return self._gym_env.reward_range @property def action_space(self): return self._gym_env.action_space @property def observation_space(self): config = self._config space = self.PathSpace path_space = config['path_space'] if 'path_space' in config else space['xz'] r = config['radius_anchor_circle'] if 'radius_anchor_circle' in config else 8.0 r_e = config['radius_epsilon_ratio'] if 'radius_epsilon_ratio' in config else 0.7 h = config['max_anchor_height'] if 'max_anchor_height' in config else 1.0 xyz_mode = (path_space == space['xyz']) bound = max(r * (1 + r_e), h if xyz_mode else 0) shape = (self.observation_size,) return gym.spaces.Box(-bound, +bound, dtype=np.float32, shape=shape) @property def observation_size(self): # Reference: readonly variable (Unity)FooCar/CarAgent.ObservationSize config = self._config space = self.PathSpace path_space = config['path_space'] if 'path_space' in config else space['xz'] ticker_end = config['ticker_end'] if 'ticker_end' in config else 5 ticker_start = config['ticker_start'] if 'ticker_start' in config else -3 xyz_mode = (path_space == space['xyz']) basic_num = 6 point_dim = 3 if xyz_mode else 2 return basic_num + 2 * point_dim * (ticker_end - ticker_start + 1)
class ActorUnity(Actor, RoadworkActorInterface): def __init__(self, ctx, actor_id): super(ActorUnity, self).__init__(ctx, actor_id) self.env = None # Placeholder self.actor_id = actor_id async def sim_call_method(self, data) -> object: method = data['method'] args = data['args'] # Array of arguments - [] kwargs = data['kwargs'] # Dict return getattr(self.env, method)(*args, **kwargs) async def sim_get_state(self, data) -> object: key = data['key'] has_value, val = await self._state_manager.try_get_state(key) return val async def sim_set_state(self, data) -> None: key = data['key'] value = data['value'] print(f'Setting Sim State for key {key}', flush=True) await self._state_manager.set_state(key, value) await self._state_manager.save_state() async def _on_activate(self) -> None: """An callback which will be called whenever actor is activated.""" print(f'Activate {self.__class__.__name__} actor!', flush=True) async def _on_deactivate(self) -> None: """An callback which will be called whenever actor is deactivated.""" print(f'Deactivate {self.__class__.__name__} actor!', flush=True) # see behavior_spec: https://github.com/Unity-Technologies/ml-agents/blob/release_4_docs/docs/Python-API.md#interacting-with-a-unity-environment # behavior_spec.action_type and behavior_spec.action_shape is what we need here async def sim_action_space(self) -> object: behavior_names = list(self.env.behavior_specs.keys()) # the behavior_names which map to a Behavior Spec with observation_shapes, action_type, action_shape behavior_idx = 0 # we currently support only 1 behavior spec! even though Unity can support multiple (@TODO) behavior_spec = self.env.behavior_specs[behavior_names[behavior_idx]] print(f"Action Type: {behavior_spec.action_type}", flush=True) print(f"Action Shape: {behavior_spec.action_shape}", flush=True) # We can use /src/Lib/python/roadwork/roadwork/json/unserializer.py as an example # Currently only ActionType.DISCRETE implemented, all ActionTypes can be found here: https://github.com/Unity-Technologies/ml-agents/blob/3901bad5b0b4e094e119af2f9d0d1304ad3f97ae/ml-agents-envs/mlagents_envs/base_env.py#L247 # Note: Unity supports DISCRETE or CONTINUOUS action spaces @TODO: implement continuous in a specific env (which one??) if behavior_spec.is_action_discrete() == True: self.env.action_space = spaces.Discrete(behavior_spec.action_shape[0]) print(f"Converted Action Space: {self.env.action_space}", flush=True) res = Serializer.serializeMeta(self.env.action_space) return res # see behavior_spec: https://github.com/Unity-Technologies/ml-agents/blob/release_4_docs/docs/Python-API.md#interacting-with-a-unity-environment # behavior_spec.observation_shapes is what we need, this is an array of tuples [ (), (), (), ... ] which represents variables? (@TODO: Confirm) (e.g. https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md#basic) # @TODO: This sounds as a MultiDiscrete environment (https://github.com/openai/gym/blob/master/gym/spaces/multi_discrete.py) so we map to this currently async def sim_observation_space(self) -> object: behavior_names = list(self.env.behavior_specs.keys()) # the behavior_names which map to a Behavior Spec with observation_shapes, action_type, action_shape behavior_idx = 0 # we currently support only 1 behavior spec! even though Unity can support multiple (@TODO) behavior_spec = self.env.behavior_specs[behavior_names[behavior_idx]] print(f"Observation Shapes: {behavior_spec.observation_shapes}", flush=True) observation_space_n_vec = [] for i in range(0, len(behavior_spec.observation_shapes)): observation_space_n_vec.append(behavior_spec.observation_shapes[i][0]) # Get el 0 from the tuple, containing the size print(f"Converted Observation Space: {observation_space_n_vec}", flush=True) self.env.observation_space = spaces.MultiDiscrete(observation_space_n_vec) res = Serializer.serializeMeta(self.env.observation_space) return res async def sim_create(self, data) -> None: """An actor method to create a sim environment.""" env_id = data['env_id'] # seed = data['seed'] print(f'Creating sim with value {env_id}', flush=True) print(f"Current dir: {os.getcwd()}", flush=True) try: print("[Server] Creating Unity Environment", flush=True) self.env = UnityEnvironment(f"{os.getcwd()}/src/Server/Unity/envs/{env_id}/{env_id}") print("[Server] Resetting environment already", flush=True) self.env.reset() # we need to reset first in Unity # self.unity_env = UnityEnvironment("./environments/GridWorld") # self.env = gym.make(env_id) # if seed: # self.env.seed(seed) except gym.error.Error as e: print(e) raise Exception("Attempted to look up malformed environment ID '{}'".format(env_id)) except Exception as e: print(e) raise Exception(e) except: print(sys.exc_info()) traceback.print_tb(sys.exc_info()[2]) raise async def sim_reset(self) -> object: observation = self.env.reset() # observation is a ndarray, we need to serialize this # therefore, change it to list type which is serializable if isinstance(observation, np.ndarray): observation = observation.tolist() return observation async def sim_render(self) -> None: self.env.render() async def sim_monitor_start(self, data) -> None: episodeInterval = 10 # Create a recording every X episodes if data['episode_interval']: episodeInterval = int(data['episode_interval']) v_c = lambda count: count % episodeInterval == 0 # Create every X episodes #self.env = gym.wrappers.Monitor(self.env, f'./output/{self.actor_id}', resume=False, force=True, video_callable=v_c) #self.env = UnityToGymWrapper(self.unity_environment) #defaults to BaseEnv self.env = UnityToGymWrapper() async def sim_monitor_stop(self) -> None: self.env.close() async def sim_action_sample(self) -> object: action = self.env.action_space.sample() return action async def sim_step(self, data) -> object: action = data['action'] # Unity requires us to set the action with env.set_actions(behavior_name, action) where action is an array behavior_names = list(self.env.behavior_specs.keys()) # the behavior_names which map to a Behavior Spec with observation_shapes, action_type, action_shape behavior_idx = 0 # we currently support only 1 behavior spec! even though Unity can support multiple (@TODO) behavior_name = behavior_names[behavior_idx] self.env.set_actions(behavior_name, np.array([ [ action ] ])) # first dimension = number of agents, second dimension = action? self.env.step() # step does not return in Unity # Get the DecisionSteps and TerminalSteps # -> they both contain: # DecisionSteps: Which agents need an action this step? (Note: contains action masks!) # E.g.: DecisionStep(obs=[array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float32)], reward=-0.01, agent_id=0, action_mask=[array([False, False, False])]) # TerminalSteps: Which agents their episode ended? decision_steps, terminal_steps = self.env.get_steps(behavior_names[behavior_idx]) # print(decision_steps, flush=True) # print(terminal_steps, flush=True) # print(decision_steps[0], flush=True) # print(terminal_steps[0], flush=True) # We support 1 decision step currently, get its observation # TODO decision_step_idx = 0 decision_step = decision_steps[decision_step_idx] obs, reward, agent_id, action_mask = decision_step observation = obs[decision_step_idx] reward = float(reward) isDone = False info = {} # @TODO: terminal_steps should be implemented, it requires a reset # observation is a ndarray, we need to serialize this # therefore, change it to list type which is serializable if isinstance(observation, np.ndarray): observation = observation.tolist() return observation, reward, isDone, info