示例#1
0
def populate_churn_plots(q):
    shap_plot = churn_predictor.get_shap_explanation(
        q.client.selected_customer_index)
    q.page["shap_plot"] = ui.image_card(
        box=config.boxes["shap_plot"],
        title="",
        type="png",
        image=get_image_from_matplotlib(shap_plot),
    )

    top_negative_pd_plot = churn_predictor.get_top_negative_pd_explanation(
        q.client.selected_customer_index)
    q.page["top_negative_pd_plot"] = ui.image_card(
        box=config.boxes["top_negative_pd_plot"],
        title="Feature Most Contributing to Retention",
        type="png",
        image=get_image_from_matplotlib(top_negative_pd_plot),
    )

    top_positive_pd_plot = churn_predictor.get_top_positive_pd_explanation(
        q.client.selected_customer_index)
    q.page["top_positive_pd_plot"] = ui.image_card(
        box=config.boxes["top_positive_pd_plot"],
        title="Feature Most Contributing to Churn",
        type="png",
        image=get_image_from_matplotlib(top_positive_pd_plot),
    )
示例#2
0
def render_text_word_cloud_image(q: Q, image):
    q.page['all'] = ui.image_card(
        box=config.boxes['middle_panel'],
        title=f'Word Cloud of the {config.column_mapping[q.client.review]}',
        type='png',
        image=image,
    )
示例#3
0
文件: app.py 项目: mjdhasan/wave-apps
def render_all_text_word_cloud(q: Q):
    image = plot_word_cloud(merge_to_single_text(config.dataset[q.client.review]))

    q.page['all'] = ui.image_card(
        box=config.boxes['middle_panel'],
        title=f'Word Cloud of the {config.column_mapping[q.client.review]}',
        type='png',
        image=image,
    )
示例#4
0
文件: app.py 项目: h2oai/wave-apps
def init(q: Q):
    q.page['meta'] = ui.meta_card(
        box='',
        title='Explain Ratings',
        layouts=[
            ui.layout(breakpoint='xs',
                      zones=[
                          ui.zone('header'),
                          ui.zone('body',
                                  direction=ui.ZoneDirection.ROW,
                                  size='calc(100vh - 70px)',
                                  zones=[
                                      ui.zone('sidebar', size='350px'),
                                      ui.zone('content',
                                              direction=ui.ZoneDirection.ROW)
                                  ])
                      ]),
        ])
    q.page['header'] = ui.header_card(box='header',
                                      title='Hotel Reviews',
                                      subtitle='Explains the hotel reviews',
                                      icon='ReviewSolid',
                                      icon_color='#00A8E0')
    q.client.review = config.review_column_list[0]

    form_filters = []
    for column in config.filterable_columns:
        choices = [ui.choice(name='empty', label='All')] + [
            ui.choice(name=str(column), label=str(column))
            for column in config.dataset[column].drop_duplicates()
        ]
        form_filters.append(
            ui.dropdown(name=f'filter_{column}',
                        label=config.column_mapping[column],
                        trigger=True,
                        value='empty',
                        choices=choices))

    sidebar_items = [
        ui.dropdown(name='review',
                    label='Review type',
                    value=q.client.review,
                    trigger=True,
                    choices=[
                        ui.choice(name=column,
                                  label=config.column_mapping[column])
                        for column in config.dataset[config.review_column_list]
                    ]),
        ui.separator('Filters')
    ] + form_filters
    q.page['sidebar'] = ui.form_card(box='sidebar', items=sidebar_items)
    q.page['original'] = ui.image_card(box='content',
                                       title='Original',
                                       type='png',
                                       image=plot_word_cloud(
                                           config.dataset[q.client.review], q))
示例#5
0
def image_card_from_image(path_image: Path,
                          box: str,
                          title: str,
                          image_type: str = 'png') -> ui.image_card:
    """
    Putting an image into Q ui.image_card.
    """
    with open(Path(path_image), 'rb') as file_image:
        base64_encoded_string = base64.b64encode(
            file_image.read()).decode('utf8')

    card = ui.image_card(
        box=box,
        title=title,
        type=image_type,
        image=base64_encoded_string,
    )

    return card
示例#6
0
def render_compare_word_cloud(q: Q):
    df = filter_data_frame(config.dataset, q.client.filters)

    if len(df):
        image = plot_word_cloud(merge_to_single_text(df[q.client.review]))

        q.page['compare'] = ui.image_card(
            box=config.boxes['right_panel'],
            title='Word Cloud based on the selected filters',
            type='png',
            image=image,
        )
    else:
        q.page['compare'] = ui.form_card(
            box=config.boxes['right_panel'],
            items=[
                ui.message_bar(type='warning',
                               text='No reviews matching filter criteria!')
            ])
示例#7
0
def render_customer_page(q: Q):
    init(q)

    selected_row = int(q.args.risk_table[0])
    training_df = predictor.get_testing_data_as_pd_frame()
    predictions_df = predictor.predicted_df.as_data_frame()
    contributions_df = predictor.contributions_df.as_data_frame()
    del contributions_df['BiasTerm']

    q.client.selected_customer_id = training_df.loc[selected_row]["ID"]
    print("selected id : ", q.client.selected_customer_id)
    score = predictions_df.loc[selected_row]["predict"]
    approve = bool(score < config.approval_threshold)

    drop_column_from_df(training_df, 'default.payment.next.month')
    add_column_to_df(training_df, predictions_df, 'Default Prediction Rate',
                     'predict')
    training_df = round_df_column(training_df, 'Default Prediction Rate', 4)

    render_customer_details_table(q, training_df, selected_row)

    shap_plot = predictor.get_shap_explanation(selected_row)
    q.page["shap_plot"] = ui.image_card(
        box='shap_plot',
        title="Effectiveness of each attribute on defaulting next payment",
        type="png",
        image=get_image_from_matplotlib(shap_plot, dpi=85),
    )

    render_customer_summary(q, training_df, contributions_df, selected_row,
                            approve)

    q.page["buttons"] = ui.form_card(box='button_group',
                                     items=[
                                         ui.buttons([
                                             ui.button(name='reject_btn',
                                                       label='Reject',
                                                       primary=not approve),
                                             ui.button(name='approve_btn',
                                                       label='Approve',
                                                       primary=approve),
                                         ])
                                     ])
示例#8
0
文件: app.py 项目: h2oai/wave-apps
def render_diff_word_cloud(q: Q):
    df = config.dataset

    for key, value in q.client.filters.items():
        df = df[df[key] == value]

    if len(df):
        q.page['diff'] = ui.image_card(box='content',
                                       title='Diff',
                                       type='png',
                                       image=plot_word_cloud(
                                           df[q.client.review], q))
    else:
        # TODO: Move into sidebar when https://github.com/h2oai/wave/pull/507 merged.
        q.page['diff'] = ui.form_card(
            box='content',
            items=[
                ui.message_bar(type='warning',
                               text='No reviews matching filter criteria!')
            ])
示例#9
0
from h2o_wave import site, ui
import io
import base64
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(19680801)

n = 25
plt.figure(figsize=(3, 3))
plt.scatter(
    np.random.rand(n), np.random.rand(n),
    s=(30 * np.random.rand(n)) ** 2,
    c=np.random.rand(n),
    alpha=0.5,
)

buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = base64.b64encode(buf.read()).decode('utf-8')

page = site['/demo']
page['example'] = ui.image_card(
    box='1 1 3 5',
    title='An image',
    type='png',
    image=image,
)
page.save()
示例#10
0
plt.scatter(
    np.random.rand(n), np.random.rand(n),
    s=(30 * np.random.rand(n)) ** 2,
    c=np.random.rand(n),
    alpha=0.5,
)

buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
image = base64.b64encode(buf.read()).decode('utf-8')

page = site['/demo']
page['example1'] = ui.image_card(
    box='1 1 3 5',
    title='An image',
    type='png',
    image=image,
)

# Another way to achieve the same result is to use a data URL for the path:
# The example below constructs the data URL from the base64-encoded
#   used in the previous example.
page['example2'] = ui.image_card(
    box='1 6 3 5',
    title='An image',
    path=f"data:image/png;base64,{image}",
)

page.save()