def set_default_params(self, accuracy=None, time_tolerance=None, interpretability=None, **kwargs): # First call the parent set_default_params LightGBMModel.set_default_params( self, accuracy=accuracy, time_tolerance=time_tolerance, interpretability=interpretability, **kwargs ) # Then modify the parameters self.params["grow_policy"] = "lossguide" self.params["max_leaves"] = 8192 self.params["max_depth"] = -1
def set_default_params(self, accuracy=None, time_tolerance=None, interpretability=None, **kwargs): # First call the LightGBM set_default_params # This will input all model parameters just like DAI would do. LightGBMModel.set_default_params(self, accuracy=accuracy, time_tolerance=time_tolerance, interpretability=interpretability, **kwargs) # Now we just need to tell LightGBM to do quantile regression self.params["objective"] = "quantile" self.params["alpha"] = QuantileRegressionLightGBMModel._quantile
def set_default_params(self, accuracy=None, time_tolerance=None, interpretability=None, **kwargs): # First call the LightGBM set_default_params # This will input all model parameters just like DAI would do. LightGBMModel.set_default_params( self, accuracy=accuracy, time_tolerance=time_tolerance, interpretability=interpretability, **kwargs ) # Now we just need to tell LightGBM to use tweedie distribution self.params["objective"] = "tweedie" self.params["tweedie_variance_power"] = TweedieLightGBMModel._tweedie_variance_power
def set_default_params(self, accuracy=None, time_tolerance=None, interpretability=None, **kwargs): # Define the global loss # global custom_asymmetric_objective # First call the LightGBM set_default_params # This will input all model parameters just like DAI would do. LightGBMModel.set_default_params(self, accuracy=accuracy, time_tolerance=time_tolerance, interpretability=interpretability, **kwargs) # Now we just need to tell LightGBM that it has to optimize for our custom objective # And we are done self.params["objective"] = custom_asymmetric_objective