hac_model = HAC(test[1]) # Glass dataset if "glass" in test[0]: kmeans_sfs_glass = np.array([1,3]) kmeans_model.cluster(data_instances[:,kmeans_sfs_glass]) print "Kmeans SFS glass performance = %f" % kmeans_model.calculate_performance() kmeans_ga_glass = np.array([0,1,2,3,4,5,6]) kmeans_model = KMeans(test[1]) kmeans_model.cluster(data_instances[:,kmeans_ga_glass]) print "Kmeans GA glass performance = %f" % kmeans_model.calculate_performance() hac_sfs_glass = np.array([0]) hac_model.cluster(data_instances[:,hac_sfs_glass]) print "HAC SFS glass performance = %f" % hac_model.calculate_performance() # Iris dataset elif "iris" in test[0]: kmeans_sfs_iris = np.array([1]) kmeans_model = KMeans(test[1]) kmeans_model.cluster(data_instances[:,kmeans_sfs_iris]) print "Kmeans SFS iris performance = %f" % kmeans_model.calculate_performance() kmeans_ga_iris = np.array([0,1]) kmeans_model = KMeans(test[1]) kmeans_model.cluster(data_instances[:,kmeans_ga_iris]) print "Kmeans GA iris performance = %f" % kmeans_model.calculate_performance() hac_sfs_iris = np.array([0]) hac_model.cluster(data_instances[:,hac_sfs_iris]) print "HAC SFS glass performance = %f" % hac_model.calculate_performance() hac_ga_iris = np.array([1,2])
if "glass" in test[0]: kmeans_sfs_glass = np.array([1, 3]) kmeans_model.cluster(data_instances[:, kmeans_sfs_glass]) print("K-means SFS glass performance = %f" % kmeans_model.calculate_performance()) kmeans_ga_glass = np.array([0, 1, 2, 3, 4, 5, 6]) kmeans_model = KMeans(test[1]) kmeans_model.cluster(data_instances[:, kmeans_ga_glass]) print("K-means GA glass performance = %f" % kmeans_model.calculate_performance()) hac_sfs_glass = np.array([0]) hac_model.cluster(data_instances[:, hac_sfs_glass]) print("HAC SFS glass performance = %f" % hac_model.calculate_performance()) # Iris dataset elif "iris" in test[0]: kmeans_sfs_iris = np.array([1]) kmeans_model = KMeans(test[1]) kmeans_model.cluster(data_instances[:, kmeans_sfs_iris]) print("K-means SFS iris performance = %f" % kmeans_model.calculate_performance()) kmeans_ga_iris = np.array([0, 1]) kmeans_model = KMeans(test[1]) kmeans_model.cluster(data_instances[:, kmeans_ga_iris]) print("K-means GA iris performance = %f" % kmeans_model.calculate_performance())