def test_basics2(): input = hl.ImageParam(hl.Float(32), 3, 'input') r_sigma = hl.Param(hl.Float(32), 'r_sigma', 0.1) # Value needed if not generating an executable s_sigma = 8 # This is passed during code generation in the C++ version x = hl.Var('x') y = hl.Var('y') z = hl.Var('z') c = hl.Var('c') # Add a boundary condition clamped = hl.Func('clamped') clamped[x, y] = input[hl.clamp(x, 0, input.width()-1), hl.clamp(y, 0, input.height()-1),0] # Construct the bilateral grid r = hl.RDom(0, s_sigma, 0, s_sigma, 'r') val0 = clamped[x * s_sigma, y * s_sigma] val00 = clamped[x * s_sigma * hl.cast(hl.Int(32), 1), y * s_sigma * hl.cast(hl.Int(32), 1)] #val1 = clamped[x * s_sigma - s_sigma/2, y * s_sigma - s_sigma/2] # should fail val22 = clamped[x * s_sigma - hl.cast(hl.Int(32), s_sigma//2), y * s_sigma - hl.cast(hl.Int(32), s_sigma//2)] val2 = clamped[x * s_sigma - s_sigma//2, y * s_sigma - s_sigma//2] val3 = clamped[x * s_sigma + r.x - s_sigma//2, y * s_sigma + r.y - s_sigma//2] return
def __init__(self, input): assert type(input) == hl.Buffer_uint8 self.lut = hl.Func("lut") self.padded = hl.Func("padded") self.padded16 = hl.Func("padded16") self.sharpen = hl.Func("sharpen") self.curved = hl.Func("curved") self.input = input # For this lesson, we'll use a two-stage pipeline that sharpens # and then applies a look-up-table (LUT). # First we'll define the LUT. It will be a gamma curve. self.lut[i] = hl.cast(hl.UInt(8), hl.clamp(pow(i / 255.0, 1.2) * 255.0, 0, 255)) # Augment the input with a boundary condition. self.padded[x, y, c] = input[hl.clamp(x, 0, input.width()-1), hl.clamp(y, 0, input.height()-1), c] # Cast it to 16-bit to do the math. self.padded16[x, y, c] = hl.cast(hl.UInt(16), self.padded[x, y, c]) # Next we sharpen it with a five-tap filter. self.sharpen[x, y, c] = (self.padded16[x, y, c] * 2- (self.padded16[x - 1, y, c] + self.padded16[x, y - 1, c] + self.padded16[x + 1, y, c] + self.padded16[x, y + 1, c]) / 4) # Then apply the LUT. self.curved[x, y, c] = self.lut[self.sharpen[x, y, c]]
def get_blur(input): assert type(input) == hl.ImageParam assert input.dimensions() == 2 x, y = hl.Var("x"), hl.Var("y") clamped_input = hl.repeat_edge(input) input_uint16 = hl.Func("input_uint16") input_uint16[x,y] = hl.cast(hl.UInt(16), clamped_input[x,y]) ci = input_uint16 blur_x = hl.Func("blur_x") blur_y = hl.Func("blur_y") blur_x[x,y] = (ci[x,y]+ci[x+1,y]+ci[x+2,y])/3 blur_y[x,y] = hl.cast(hl.UInt(8), (blur_x[x,y]+blur_x[x,y+1]+blur_x[x,y+2])/3) # schedule xi, yi = hl.Var("xi"), hl.Var("yi") blur_y.tile(x, y, xi, yi, 8, 4).parallel(y).vectorize(xi, 8) blur_x.compute_at(blur_y, x).vectorize(x, 8) return blur_y
def u8(x, y, c, img): out = mkfunc("u8", img) if img.dimensions() == 2: out[x, y] = hl.cast(hl.UInt(8), img[x, y]) else: out[x, y, c] = hl.cast(hl.UInt(8), img[x, y, c]) return out
def __init__(self, input): assert input.type() == hl.UInt(8) self.lut = hl.Func("lut") self.padded = hl.Func("padded") self.padded16 = hl.Func("padded16") self.sharpen = hl.Func("sharpen") self.curved = hl.Func("curved") self.input = input # For this lesson, we'll use a two-stage pipeline that sharpens # and then applies a look-up-table (LUT). # First we'll define the LUT. It will be a gamma curve. self.lut[i] = hl.cast(hl.UInt(8), hl.clamp(pow(i / 255.0, 1.2) * 255.0, 0, 255)) # Augment the input with a boundary condition. self.padded[x, y, c] = input[hl.clamp(x, 0, input.width() - 1), hl.clamp(y, 0, input.height() - 1), c] # Cast it to 16-bit to do the math. self.padded16[x, y, c] = hl.cast(hl.UInt(16), self.padded[x, y, c]) # Next we sharpen it with a five-tap filter. self.sharpen[x, y, c] = ( self.padded16[x, y, c] * 2 - (self.padded16[x - 1, y, c] + self.padded16[x, y - 1, c] + self.padded16[x + 1, y, c] + self.padded16[x, y + 1, c]) / 4) # Then apply the LUT. self.curved[x, y, c] = self.lut[self.sharpen[x, y, c]]
def get_blur(input): assert type(input) == hl.ImageParam assert input.dimensions() == 2 x, y = hl.Var("x"), hl.Var("y") clamped_input = hl.BoundaryConditions.repeat_edge(input) input_uint16 = hl.Func("input_uint16") input_uint16[x, y] = hl.cast(hl.UInt(16), clamped_input[x, y]) ci = input_uint16 blur_x = hl.Func("blur_x") blur_y = hl.Func("blur_y") blur_x[x, y] = (ci[x, y] + ci[x + 1, y] + ci[x + 2, y]) / 3 blur_y[x, y] = hl.cast( hl.UInt(8), (blur_x[x, y] + blur_x[x, y + 1] + blur_x[x, y + 2]) / 3) # schedule xi, yi = hl.Var("xi"), hl.Var("yi") blur_y.tile(x, y, xi, yi, 8, 4).parallel(y).vectorize(xi, 8) blur_x.compute_at(blur_y, x).vectorize(x, 8) return blur_y
def test_basics2(): input = hl.ImageParam(hl.Float(32), 3, 'input') r_sigma = hl.Param(hl.Float(32), 'r_sigma', 0.1) s_sigma = 8 x = hl.Var('x') y = hl.Var('y') z = hl.Var('z') c = hl.Var('c') # Add a boundary condition clamped = hl.Func('clamped') clamped[x, y] = input[hl.clamp(x, 0, input.width() - 1), hl.clamp(y, 0, input.height() - 1), 0] # Construct the bilateral grid r = hl.RDom([(0, s_sigma), (0, s_sigma)], 'r') val0 = clamped[x * s_sigma, y * s_sigma] val00 = clamped[x * s_sigma * hl.cast(hl.Int(32), 1), y * s_sigma * hl.cast(hl.Int(32), 1)] val22 = clamped[x * s_sigma - hl.cast(hl.Int(32), s_sigma // 2), y * s_sigma - hl.cast(hl.Int(32), s_sigma // 2)] val2 = clamped[x * s_sigma - s_sigma // 2, y * s_sigma - s_sigma // 2] val3 = clamped[x * s_sigma + r.x - s_sigma // 2, y * s_sigma + r.y - s_sigma // 2] try: val1 = clamped[x * s_sigma - s_sigma / 2, y * s_sigma - s_sigma / 2] except RuntimeError as e: assert 'Implicit cast from float32 to int' in str(e) else: assert False, 'Did not see expected exception!'
def average(a, b): if type(a) is not hl.Expr: a = hl.Expr(a) if type(b) is not hl.Expr: b = hl.Expr(b) "hl.Expr average(hl.Expr a, hl.Expr b)" # Types must match. assert a.type() == b.type() # For floating point types: if (a.type().is_float()): # The '2' will be promoted to the floating point type due to # rule 3 above. return (a + b)/2 # For integer types, we must compute the intermediate value in a # wider type to avoid overflow. narrow = a.type() wider = narrow.with_bits(narrow.bits() * 2) a = hl.cast(wider, a) b = hl.cast(wider, b) return hl.cast(narrow, (a + b)/2)
def test_basics2(): input = hl.ImageParam(hl.Float(32), 3, 'input') r_sigma = hl.Param(hl.Float(32), 'r_sigma', 0.1) # Value needed if not generating an executable s_sigma = 8 # This is passed during code generation in the C++ version x = hl.Var('x') y = hl.Var('y') z = hl.Var('z') c = hl.Var('c') # Add a boundary condition clamped = hl.Func('clamped') clamped[x, y] = input[hl.clamp(x, 0, input.width() - 1), hl.clamp(y, 0, input.height() - 1), 0] if True: print("s_sigma", s_sigma) print("s_sigma/2", s_sigma / 2) print("s_sigma//2", s_sigma // 2) print() print("x * s_sigma", x * s_sigma) print("x * 8", x * 8) print("x * 8 + 4", x * 8 + 4) print("x * 8 * 4", x * 8 * 4) print() print("x", x) print("(x * s_sigma).type()", ) print("(x * 8).type()", (x * 8).type()) print("(x * 8 + 4).type()", (x * 8 + 4).type()) print("(x * 8 * 4).type()", (x * 8 * 4).type()) print("(x * 8 / 4).type()", (x * 8 / 4).type()) print("((x * 8) * 4).type()", ((x * 8) * 4).type()) print("(x * (8 * 4)).type()", (x * (8 * 4)).type()) assert (x * 8).type() == hl.Int(32) assert (x * 8 * 4).type() == hl.Int(32) # yes this did fail at some point assert ((x * 8) / 4).type() == hl.Int(32) assert (x * (8 / 4)).type() == hl.Float(32) # under python3 division rules assert (x * (8 // 4)).type() == hl.Int(32) #assert (x * 8 // 4).type() == hl.Int(32) # not yet implemented # Construct the bilateral grid r = hl.RDom(0, s_sigma, 0, s_sigma, 'r') val0 = clamped[x * s_sigma, y * s_sigma] val00 = clamped[x * s_sigma * hl.cast(hl.Int(32), 1), y * s_sigma * hl.cast(hl.Int(32), 1)] #val1 = clamped[x * s_sigma - s_sigma/2, y * s_sigma - s_sigma/2] # should fail val22 = clamped[x * s_sigma - hl.cast(hl.Int(32), s_sigma // 2), y * s_sigma - hl.cast(hl.Int(32), s_sigma // 2)] val2 = clamped[x * s_sigma - s_sigma // 2, y * s_sigma - s_sigma // 2] val3 = clamped[x * s_sigma + r.x - s_sigma // 2, y * s_sigma + r.y - s_sigma // 2] return
def f32(x, y, c, img): out = mkfunc("f32", img) if img.dimensions() == 2: out[x, y] = hl.cast(hl.Float(32), img[x, y]) else: out[x, y, c] = hl.cast(hl.Float(32), img[x, y, c]) return out
def merge_temporal(images, alignment): weight = hl.Func("merge_temporal_weights") total_weight = hl.Func("merge_temporal_total_weights") output = hl.Func("merge_temporal_output") ix, iy, tx, ty, n = hl.Var('ix'), hl.Var('iy'), hl.Var('tx'), hl.Var('ty'), hl.Var('n') rdom0 = hl.RDom([(0, 16), (0, 16)]) rdom1 = hl.RDom([(1, images.dim(2).extent() - 1)]) imgs_mirror = hl.BoundaryConditions.mirror_interior(images, [(0, images.width()), (0, images.height())]) layer = box_down2(imgs_mirror, "merge_layer") offset = Point(alignment[tx, ty, n]).clamp(Point(MINIMUM_OFFSET, MINIMUM_OFFSET), Point(MAXIMUM_OFFSET, MAXIMUM_OFFSET)) al_x = idx_layer(tx, rdom0.x) + offset.x / 2 al_y = idx_layer(ty, rdom0.y) + offset.y / 2 ref_val = layer[idx_layer(tx, rdom0.x), idx_layer(ty, rdom0.y), 0] alt_val = layer[al_x, al_y, n] factor = 8.0 min_distance = 10 max_distance = 300 # max L1 distance, otherwise the value is not used distance = hl.sum(hl.abs(hl.cast(hl.Int(32), ref_val) - hl.cast(hl.Int(32), alt_val))) / 256 normal_distance = hl.max(1, hl.cast(hl.Int(32), distance) / factor - min_distance / factor) # Weight for the alternate frame weight[tx, ty, n] = hl.select(normal_distance > (max_distance - min_distance), 0.0, 1.0 / normal_distance) total_weight[tx, ty] = hl.sum(weight[tx, ty, rdom1]) + 1 offset = Point(alignment[tx, ty, rdom1]) al_x = idx_im(tx, ix) + offset.x al_y = idx_im(ty, iy) + offset.y ref_val = imgs_mirror[idx_im(tx, ix), idx_im(ty, iy), 0] alt_val = imgs_mirror[al_x, al_y, rdom1] # Sum all values according to their weight, and divide by total weight to obtain average output[ix, iy, tx, ty] = hl.sum(weight[tx, ty, rdom1] * alt_val / total_weight[tx, ty]) + ref_val / total_weight[ tx, ty] weight.compute_root().parallel(ty).vectorize(tx, 16) total_weight.compute_root().parallel(ty).vectorize(tx, 16) output.compute_root().parallel(ty).vectorize(ix, 32) return output
def mult(input, scale): brighter = hl.Func("mult") x, y, c = hl.Var("x"), hl.Var("y"), hl.Var("c") value = input[x, y, c] value = hl.cast(hl.Float(32), value) value = value * scale value = hl.min(value, 255.0) value = hl.cast(hl.UInt(8), value) brighter[x, y, c] = value return brighter
def box_down2(input, name): output = hl.Func(name) x, y, n = hl.Var("x"), hl.Var("y"), hl.Var('n') rdom = hl.RDom([(0, 2), (0, 2)]) output[x, y, n] = hl.cast( hl.UInt(16), hl.sum(hl.cast(hl.UInt(32), input[2 * x + rdom.x, 2 * y + rdom.y, n])) / 4) output.compute_root().parallel(y).vectorize(x, 16) return output
def resize_scale(input, fx, fy): shr = hl.Func('resize') x, y, c = hl.Var("x"), hl.Var("y"), hl.Var("c") index_x = hl.Func("index_x") index_y = hl.Func("index_y") index_x.trace_stores() index_y.trace_stores() index_x[x] = hl.cast(hl.Int(32), x / fx) index_y[y] = hl.cast(hl.Int(32), y / fy) final = hl.Func("final") final[x, y, c] = input[index_x[x], index_y[y], c] return final
def test_basics3(): input = hl.ImageParam(hl.Float(32), 3, 'input') r_sigma = hl.Param(hl.Float(32), 'r_sigma', 0.1) # Value needed if not generating an executable s_sigma = 8 # This is passed during code generation in the C++ version x = hl.Var('x') y = hl.Var('y') z = hl.Var('z') c = hl.Var('c') # Add a boundary condition clamped = hl.Func('clamped') clamped[x, y] = input[hl.clamp(x, 0, input.width()-1), hl.clamp(y, 0, input.height()-1),0] # Construct the bilateral grid r = hl.RDom(0, s_sigma, 0, s_sigma, 'r') val = clamped[x * s_sigma + r.x - s_sigma//2, y * s_sigma + r.y - s_sigma//2] val = hl.clamp(val, 0.0, 1.0) #zi = hl.cast(hl.Int(32), val * (1.0/r_sigma) + 0.5) zi = hl.cast(hl.Int(32), (val / r_sigma) + 0.5) histogram = hl.Func('histogram') histogram[x, y, z, c] = 0.0 ss = hl.select(c == 0, val, 1.0) print("hl.select(c == 0, val, 1.0)", ss) left = histogram[x, y, zi, c] print("histogram[x, y, zi, c]", histogram[x, y, zi, c]) print("histogram[x, y, zi, c]", left) left += 5 print("histogram[x, y, zi, c] after += 5", left) left += ss return
def merge_spatial(input): weight = hl.Func("raised_cosine_weights") output = hl.Func("merge_spatial_output") v, x, y = hl.Var('v'), hl.Var('x'), hl.Var('y') # modified raised cosine window weight[v] = 0.5 - 0.5 * hl.cos(2 * math.pi * (v + 0.5) / TILE_SIZE) weight_00 = weight[idx_0(x)] * weight[idx_0(y)] weight_10 = weight[idx_1(x)] * weight[idx_0(y)] weight_01 = weight[idx_0(x)] * weight[idx_1(y)] weight_11 = weight[idx_1(x)] * weight[idx_1(y)] val_00 = input[idx_0(x), idx_0(y), tile_0(x), tile_0(y)] val_10 = input[idx_1(x), idx_0(y), tile_1(x), tile_0(y)] val_01 = input[idx_0(x), idx_1(y), tile_0(x), tile_1(y)] val_11 = input[idx_1(x), idx_1(y), tile_1(x), tile_1(y)] output[x, y] = hl.cast(hl.UInt(16), weight_00 * val_00 + weight_10 * val_10 + weight_01 * val_01 + weight_11 * val_11) weight.compute_root().vectorize(v, 32) output.compute_root().parallel(y).vectorize(x, 32) return output
def test_basics(): input = hl.ImageParam(hl.UInt(16), 2, 'input') x, y = hl.Var('x'), hl.Var('y') blur_x = hl.Func('blur_x') blur_xx = hl.Func('blur_xx') blur_y = hl.Func('blur_y') yy = hl.cast(hl.Int(32), 1) assert yy.type() == hl.Int(32) z = x + 1 input[x, y] input[0, 0] input[z, y] input[x + 1, y] input[x, y] + input[x + 1, y] if False: aa = blur_x[x, y] bb = blur_x[x, y + 1] aa + bb blur_x[x, y] + blur_x[x, y + 1] (input[x, y] + input[x + 1, y]) / 2 blur_x[x, y] blur_xx[x, y] = input[x, y] blur_x[x, y] = (input[x, y] + input[x + 1, y] + input[x + 2, y]) / 3 blur_y[x, y] = (blur_x[x, y] + blur_x[x, y + 1] + blur_x[x, y + 2]) / 3 xi, yi = hl.Var('xi'), hl.Var('yi') blur_y.tile(x, y, xi, yi, 8, 4).parallel(y).vectorize(xi, 8) blur_x.compute_at(blur_y, x).vectorize(x, 8) blur_y.compile_jit()
def gaussian_down4(input, name): output = hl.Func(name) k = hl.Func(name + "_filter") x, y, n = hl.Var("x"), hl.Var("y"), hl.Var('n') rdom = hl.RDom([(-2, 5), (-2, 5)]) k[x, y] = 0 k[-2, -2] = 2 k[-1, -2] = 4 k[0, -2] = 5 k[1, -2] = 4 k[2, -2] = 2 k[-2, -1] = 4 k[-1, -1] = 9 k[0, -1] = 12 k[1, -1] = 9 k[2, -1] = 4 k[-2, 0] = 5 k[-1, 0] = 12 k[0, 0] = 15 k[1, 0] = 12 k[2, 0] = 5 k[-2, 1] = 4 k[-1, 1] = 9 k[0, 1] = 12 k[1, 1] = 9 k[2, 1] = 4 k[-2, 2] = 2 k[-1, 2] = 4 k[0, 2] = 5 k[1, 2] = 4 k[2, 2] = 2 output[x, y, n] = hl.cast( hl.UInt(16), hl.sum( hl.cast( hl.UInt(32), input[4 * x + rdom.x, 4 * y + rdom.y, n] * k[rdom.x, rdom.y])) / 159) k.compute_root().parallel(y).parallel(x) output.compute_root().parallel(y).vectorize(x, 16) return output
def test_print_when(): x = hl.Var('x') f = hl.Func('f') f[x] = hl.print_when(x == 3, hl.cast(hl.UInt(8), x * x), 'is result at', x) buf = hl.Buffer(hl.UInt(8), [10]) output = StringIO() with _redirect_stdout(output): f.realize(buf) expected = '9 is result at 3\n' actual = output.getvalue() assert expected == actual, "Expected: %s, Actual: %s" % (expected, actual)
def test_print_expr(): x = hl.Var('x') f = hl.Func('f') f[x] = hl.print(hl.cast(hl.UInt(8), x), 'is what', 'the', 1, 'and', 3.1415, 'saw') buf = hl.Buffer(hl.UInt(8), 1) output = StringIO() with _redirect_stdout(output): f.realize(buf) expected = '0 is what the 1 and 3.141500 saw\n' actual = output.getvalue() assert expected == actual, "Expected: %s, Actual: %s" % (expected, actual) return
def test_compiletime_error(): x = hl.Var('x') y = hl.Var('y') f = hl.Func('f') f[x, y] = hl.cast(hl.UInt(16), x + y) # Deliberate type-mismatch error buf = hl.Buffer(hl.UInt(8), [2, 2]) try: f.realize(buf) except RuntimeError as e: assert 'Buffer has type uint8, but Func "f" has type uint16.' in str(e) else: assert False, 'Did not see expected exception!'
def test_runtime_error(): x = hl.Var('x') f = hl.Func('f') f[x] = hl.cast(hl.UInt(8), x) f.bound(x, 0, 1) # Deliberate runtime error buf = hl.Buffer(hl.UInt(8), [10]) try: f.realize(buf) except RuntimeError as e: assert 'do not cover required region' in str(e) else: assert False, 'Did not see expected exception!'
def test_basics(): input = hl.ImageParam(hl.UInt(16), 2, 'input') x, y = hl.Var('x'), hl.Var('y') blur_x = hl.Func('blur_x') blur_xx = hl.Func('blur_xx') blur_y = hl.Func('blur_y') yy = hl.cast(hl.Int(32), 1) assert yy.type() == hl.Int(32) print("yy type:", yy.type()) z = x + 1 input[x,y] input[0,0] input[z,y] input[x+1,y] print("ping 0.2") input[x,y]+input[x+1,y] if False: aa = blur_x[x,y] bb = blur_x[x,y+1] aa + bb blur_x[x,y]+blur_x[x,y+1] print("ping 0.3") (input[x,y]+input[x+1,y]) / 2 print("ping 0.4") blur_x[x,y] print("ping 0.4.1") blur_xx[x,y] = input[x,y] print("ping 0.5") blur_x[x,y] = (input[x,y]+input[x+1,y]+input[x+2,y])/3 print("ping 1") blur_y[x,y] = (blur_x[x,y]+blur_x[x,y+1]+blur_x[x,y+2])/3 xi, yi = hl.Var('xi'), hl.Var('yi') print("ping 2") blur_y.tile(x, y, xi, yi, 8, 4).parallel(y).vectorize(xi, 8) blur_x.compute_at(blur_y, x).vectorize(x, 8) blur_y.compile_jit() print("Compiled to jit") return
def __init__(self, x=None, y=None): if x is None and y is None: self.x = hl.cast(hl.Int(16), 0) self.y = hl.cast(hl.Int(16), 0) elif x is not None and y is None: if type(x) is hl.FuncRef: hl.Tuple(x) self.x = hl.cast(hl.Int(16), x[0]) self.y = hl.cast(hl.Int(16), x[1]) elif type(x) is tuple: self.x = hl.cast(hl.Int(16), x[0]) self.y = hl.cast(hl.Int(16), x[1]) else: self.x = hl.cast(hl.Int(16), x) self.y = hl.cast(hl.Int(16), y)
def get_erode(input): """ Erode on 5x5 stencil, first erode x then erode y. """ x = hl.Var("x") y = hl.Var("y") c = hl.Var("c") input_clamped = hl.Func("input_clamped") erode_x = hl.Func("erode_x") erode_y = hl.Func("erode_y") input_clamped[x, y, c] = input[ hl.clamp(x, hl.cast(hl.Int(32), 0 ), hl.cast(hl.Int(32), input.width() - 1)), hl.clamp(y, hl.cast(hl.Int(32), 0 ), hl.cast(hl.Int(32), input.height() - 1)), c] erode_x[x, y, c] = hl.min( hl.min( hl.min( hl.min(input_clamped[x - 2, y, c], input_clamped[x - 1, y, c]), input_clamped[x, y, c]), input_clamped[x + 1, y, c]), input_clamped[x + 2, y, c]) erode_y[x, y, c] = hl.min( hl.min( hl.min(hl.min(erode_x[x, y - 2, c], erode_x[x, y - 1, c]), erode_x[x, y, c]), erode_x[x, y + 1, c]), erode_x[x, y + 2, c]) yi = hl.Var("yi") # CPU Schedule erode_x.compute_root().split(y, y, yi, 8).parallel(y) erode_y.compute_root().split(y, y, yi, 8).parallel(y) return erode_y
def test_compiletime_error(): x = hl.Var('x') y = hl.Var('y') f = hl.Func('f') f[x, y] = hl.cast(hl.UInt(16), x + y) # Deliberate type-mismatch error buf = hl.Buffer(hl.UInt(8), 2, 2) try: f.realize(buf) except RuntimeError as e: print('Saw expected exception (%s)' % str(e)) else: assert False, 'Did not see expected exception!'
def test_print_when(): x = hl.Var('x') f = hl.Func('f') f[x] = hl.print_when(x == 3, hl.cast(hl.UInt(8), x*x), 'is result at', x) buf = hl.Buffer(hl.UInt(8), 10) output = StringIO() with _redirect_stdout(output): f.realize(buf) expected = '9 is result at 3\n' actual = output.getvalue() assert expected == actual, "Expected: %s, Actual: %s" % (expected, actual) return
def prefilterXSobel(image, W, H): x, y = Var("x"), Var("y") clamped, gray = Func("clamped"), Func("gray") gray[x, y] = 0.2989*image[x, y, 0] + 0.5870*image[x, y, 1] + 0.1140*image[x, y, 2] clamped[x, y] = gray[h.clamp(x, 0, W-1), h.clamp(y, 0, H-1)] temp, xSobel = Func("temp"), Func("xSobel") temp[x, y] = clamped[x+1, y] - clamped[x-1, y] xSobel[x, y] = h.cast(Int(8), h.clamp(temp[x, y-1] + 2 * temp[x, y] + temp[x, y+1], -31, 31)) xi, xo, yi, yo = Var("xi"), Var("xo"), Var("yi"), Var("yo") xSobel.compute_root().tile(x, y, xo, yo, xi, yi, 64, 32).parallel(yo).parallel(xo) temp.compute_at(xSobel, yi).vectorize(x, 8) return xSobel
def contrast(input, strength, black_point): output = hl.Func("contrast_output") x, y, c = hl.Var("x"), hl.Var("y"), hl.Var("c") scale = strength inner_constant = math.pi / (2 * scale) sin_constant = hl.sin(inner_constant) slope = 65535 / (2 * sin_constant) constant = slope * sin_constant factor = math.pi / (scale * 65535) val = factor * hl.cast(hl.Float(32), input[x, y, c]) output[x, y, c] = hl.u16_sat(slope * hl.sin(val - inner_constant) + constant) white_scale = 65535 / (65535 - black_point) output[x, y, c] = hl.u16_sat((hl.cast(hl.Int(32), output[x, y, c]) - black_point) * white_scale) output.compute_root().parallel(y).vectorize(x, 16) return output
def get_erode(input): """ Erode on 5x5 stencil, first erode x then erode y. """ x = hl.Var("x") y = hl.Var("y") c = hl.Var("c") input_clamped = hl.Func("input_clamped") erode_x = hl.Func("erode_x") erode_y = hl.Func("erode_y") input_clamped[x,y,c] = input[hl.clamp(x,hl.cast(hl.Int(32),0),hl.cast(hl.Int(32),input.width()-1)), hl.clamp(y,hl.cast(hl.Int(32),0),hl.cast(hl.Int(32),input.height()-1)), c] erode_x[x,y,c] = hl.min(hl.min(hl.min(hl.min(input_clamped[x-2,y,c],input_clamped[x-1,y,c]),input_clamped[x,y,c]),input_clamped[x+1,y,c]),input_clamped[x+2,y,c]) erode_y[x,y,c] = hl.min(hl.min(hl.min(hl.min(erode_x[x,y-2,c],erode_x[x,y-1,c]),erode_x[x,y,c]),erode_x[x,y+1,c]),erode_x[x,y+2,c]) yi = hl.Var("yi") # CPU Schedule erode_x.compute_root().split(y, y, yi, 8).parallel(y) erode_y.compute_root().split(y, y, yi, 8).parallel(y) return erode_y
def align_layer(layer, prev_alignment, prev_min, prev_max): scores = hl.Func(layer.name() + "_scores") alignment = hl.Func(layer.name() + "_alignment") xi, yi, tx, ty, n = hl.Var("xi"), hl.Var("yi"), hl.Var('tx'), hl.Var( 'ty'), hl.Var('n') rdom0 = hl.RDom([(0, 16), (0, 16)]) rdom1 = hl.RDom([(-4, 8), (-4, 8)]) # Alignment of the previous (more coarse) layer scaled to this (finer) layer prev_offset = DOWNSAMPLE_RATE * Point( prev_alignment[prev_tile(tx), prev_tile(ty), n]).clamp( prev_min, prev_max) x0 = idx_layer(tx, rdom0.x) y0 = idx_layer(ty, rdom0.y) # (x,y) coordinates in the search region relative to the offset obtained from the alignment of the previous layer x = x0 + prev_offset.x + xi y = y0 + prev_offset.y + yi ref_val = layer[x0, y0, 0] # Value of reference frame (the first frame) alt_val = layer[x, y, n] # alternate frame value # L1 distance between reference frame and alternate frame d = hl.abs(hl.cast(hl.Int(32), ref_val) - hl.cast(hl.Int(32), alt_val)) scores[xi, yi, tx, ty, n] = hl.sum(d) # Alignment for each tile, where L1 distances are minimum alignment[tx, ty, n] = Point(hl.argmin(scores[rdom1.x, rdom1.y, tx, ty, n])) + prev_offset scores.compute_at(alignment, tx).vectorize(xi, 8) alignment.compute_root().parallel(ty).vectorize(tx, 16) return alignment
def test_runtime_error(): x = hl.Var('x') f = hl.Func('f') f[x] = hl.cast(hl.UInt(8), x) f.bound(x, 0, 1) # Deliberate runtime error buf = hl.Buffer(hl.UInt(8), 10) try: f.realize(buf) except RuntimeError as e: print('Saw expected exception (%s)' % str(e)) else: assert False, 'Did not see expected exception!' return
def prefilterXSobel(image, W, H): x, y = Var("x"), Var("y") clamped, gray = Func("clamped"), Func("gray") gray[x, y] = 0.2989 * image[x, y, 0] + 0.5870 * image[ x, y, 1] + 0.1140 * image[x, y, 2] clamped[x, y] = gray[h.clamp(x, 0, W - 1), h.clamp(y, 0, H - 1)] temp, xSobel = Func("temp"), Func("xSobel") temp[x, y] = clamped[x + 1, y] - clamped[x - 1, y] xSobel[x, y] = h.cast( Int(8), h.clamp(temp[x, y - 1] + 2 * temp[x, y] + temp[x, y + 1], -31, 31)) xi, xo, yi, yo = Var("xi"), Var("xo"), Var("yi"), Var("yo") xSobel.compute_root().tile(x, y, xo, yo, xi, yi, 64, 32).parallel(yo).parallel(xo) temp.compute_at(xSobel, yi).vectorize(x, 8) return xSobel
def yuv_to_rgb(input): print(' yuv_to_rgb') output = hl.Func("yuv_to_rgb_output") x, y, c = hl.Var("x"), hl.Var("y"), hl.Var("c") Y = input[x, y, 0] U = input[x, y, 1] V = input[x, y, 2] output[x, y, c] = hl.cast(hl.UInt(16), 0) output[x, y, 0] = hl.u16_sat(Y + 1.403 * V) output[x, y, 1] = hl.u16_sat(Y - 0.344 * U - 0.714 * V) output[x, y, 2] = hl.u16_sat(Y + 1.77 * U) output.compute_root().parallel(y).vectorize(x, 16) output.update(0).parallel(y).vectorize(x, 16) output.update(1).parallel(y).vectorize(x, 16) output.update(2).parallel(y).vectorize(x, 16) return output
def test_schedules(verbose=False, test_random=False): #random_module.seed(int(sys.argv[1]) if len(sys.argv)>1 else 0) halide.exit_on_signal() f = halide.Func('f') x = halide.Var('x') y = halide.Var('y') c = halide.Var('c') g = halide.Func('g') v = halide.Var('v') input = halide.UniformImage(halide.UInt(16), 3) int_t = halide.Int(32) f[x, y, c] = input[ halide.clamp(x, halide.cast(int_t, 0 ), halide.cast(int_t, input.width() - 1)), halide.clamp(y, halide.cast(int_t, 0 ), halide.cast(int_t, input.height() - 1)), halide.clamp(c, halide.cast(int_t, 0), halide.cast(int_t, 2))] #g[v] = f[v,v] g[x, y, c] = f[x, y, c] + 1 assert sorted(halide.all_vars(g).keys()) == sorted(['x', 'y', 'c']) #, 'v']) if verbose: print halide.func_varlist(f) print 'caller_vars(f) =', caller_vars(g, f) print 'caller_vars(g) =', caller_vars(g, g) # validL = list(valid_schedules(g, f, 4)) # validL = [repr(_x) for _x in validL] # # for L in sorted(validL): # print repr(L) T0 = time.time() if not test_random: random = True #False nvalid_determ = 0 for L in schedules_func(g, f, 0, 3): nvalid_determ += 1 if verbose: print L nvalid_random = 0 for i in range(100): for L in schedules_func( g, f, 0, DEFAULT_MAX_DEPTH, random=True ): #sorted([repr(_x) for _x in valid_schedules(g, f, 3)]): if verbose and 0: print L #repr(L) nvalid_random += 1 s = [] for i in range(400): d = random_schedule(g, 0, DEFAULT_MAX_DEPTH) si = str(d) s.append(si) if verbose: print 'Schedule:', si d.apply() evaluate = d.test((36, 36, 3), input) print 'evaluate' evaluate() if test_random: print 'Success' sys.exit() T1 = time.time() s = '\n'.join(s) assert 'f.chunk(_c0)' in s assert 'f.root().vectorize' in s assert 'f.root().unroll' in s assert 'f.root().split' in s assert 'f.root().tile' in s assert 'f.root().parallel' in s assert 'f.root().transpose' in s assert nvalid_random == 100 if verbose: print 'generated in %.3f secs' % (T1 - T0) print 'random_schedule: OK'
def get_local_laplacian(input, levels, alpha, beta, J=8): downsample_counter=[0] upsample_counter=[0] x = hl.Var('x') y = hl.Var('y') def downsample(f): downx, downy = hl.Func('downx%d'%downsample_counter[0]), hl.Func('downy%d'%downsample_counter[0]) downsample_counter[0] += 1 downx[x,y,c] = (f[2*x-1,y,c] + 3.0*(f[2*x,y,c]+f[2*x+1,y,c]) + f[2*x+2,y,c])/8.0 downy[x,y,c] = (downx[x,2*y-1,c] + 3.0*(downx[x,2*y,c]+downx[x,2*y+1,c]) + downx[x,2*y+2,c])/8.0 return downy def upsample(f): upx, upy = hl.Func('upx%d'%upsample_counter[0]), hl.Func('upy%d'%upsample_counter[0]) upsample_counter[0] += 1 upx[x,y,c] = 0.25 * f[(x//2) - 1 + 2*(x%2),y,c] + 0.75 * f[x//2,y,c] upy[x,y,c] = 0.25 * upx[x, (y//2) - 1 + 2*(y%2),c] + 0.75 * upx[x,y//2,c] return upy def downsample2D(f): downx, downy = hl.Func('downx%d'%downsample_counter[0]), hl.Func('downy%d'%downsample_counter[0]) downsample_counter[0] += 1 downx[x,y] = (f[2*x-1,y] + 3.0*(f[2*x,y]+f[2*x+1,y]) + f[2*x+2,y])/8.0 downy[x,y] = (downx[x,2*y-1] + 3.0*(downx[x,2*y]+downx[x,2*y+1]) + downx[x,2*y+2])/8.0 return downy def upsample2D(f): upx, upy = hl.Func('upx%d'%upsample_counter[0]), hl.Func('upy%d'%upsample_counter[0]) upsample_counter[0] += 1 upx[x,y] = 0.25 * f[(x//2) - 1 + 2*(x%2),y] + 0.75 * f[x//2,y] upy[x,y] = 0.25 * upx[x, (y//2) - 1 + 2*(y%2)] + 0.75 * upx[x,y//2] return upy # THE ALGORITHM # loop variables c = hl.Var('c') k = hl.Var('k') # Make the remapping function as a lookup table. remap = hl.Func('remap') fx = hl.cast(float_t, x/256.0) #remap[x] = alpha*fx*exp(-fx*fx/2.0) remap[x] = alpha*fx*hl.exp(-fx*fx/2.0) # Convert to floating point floating = hl.Func('floating') floating[x,y,c] = hl.cast(float_t, input[x,y,c]) / 65535.0 # Set a boundary condition clamped = hl.Func('clamped') clamped[x,y,c] = floating[hl.clamp(x, 0, input.width()-1), hl.clamp(y, 0, input.height()-1), c] # Get the luminance channel gray = hl.Func('gray') gray[x,y] = 0.299*clamped[x,y,0] + 0.587*clamped[x,y,1] + 0.114*clamped[x,y,2] # Make the processed Gaussian pyramid. gPyramid = [hl.Func('gPyramid%d'%i) for i in range(J)] # Do a lookup into a lut with 256 entires per intensity level level = k / (levels - 1) idx = gray[x,y]*hl.cast(float_t, levels-1)*256.0 idx = hl.clamp(hl.cast(int_t, idx), 0, (levels-1)*256) gPyramid[0][x,y,k] = beta*(gray[x, y] - level) + level + remap[idx - 256*k] for j in range(1,J): gPyramid[j][x,y,k] = downsample(gPyramid[j-1])[x,y,k] # Get its laplacian pyramid lPyramid = [hl.Func('lPyramid%d'%i) for i in range(J)] lPyramid[J-1] = gPyramid[J-1] for j in range(J-1)[::-1]: lPyramid[j][x,y,k] = gPyramid[j][x,y,k] - upsample(gPyramid[j+1])[x,y,k] # Make the Gaussian pyramid of the input inGPyramid = [hl.Func('inGPyramid%d'%i) for i in range(J)] inGPyramid[0] = gray for j in range(1,J): inGPyramid[j][x,y] = downsample2D(inGPyramid[j-1])[x,y] # Make the laplacian pyramid of the output outLPyramid = [hl.Func('outLPyramid%d'%i) for i in range(J)] for j in range(J): # Split input pyramid value into integer and floating parts level = inGPyramid[j][x,y]*hl.cast(float_t, levels-1) li = hl.clamp(hl.cast(int_t, level), 0, levels-2) lf = level - hl.cast(float_t, li) # Linearly interpolate between the nearest processed pyramid levels outLPyramid[j][x,y] = (1.0-lf)*lPyramid[j][x,y,li] + lf*lPyramid[j][x,y,li+1] # Make the Gaussian pyramid of the output outGPyramid = [hl.Func('outGPyramid%d'%i) for i in range(J)] outGPyramid[J-1] = outLPyramid[J-1] for j in range(J-1)[::-1]: outGPyramid[j][x,y] = upsample2D(outGPyramid[j+1])[x,y] + outLPyramid[j][x,y] # Reintroduce color (Connelly: use eps to avoid scaling up noise w/ apollo3.png input) color = hl.Func('color') eps = 0.01 color[x,y,c] = outGPyramid[0][x,y] * (clamped[x,y,c] + eps) / (gray[x,y] + eps) output = hl.Func('local_laplacian') # Convert back to 16-bit output[x,y,c] = hl.cast(hl.UInt(16), hl.clamp(color[x,y,c], 0.0, 1.0) * 65535.0) # THE SCHEDULE remap.compute_root() target = hl.get_target_from_environment() if target.has_gpu_feature(): # GPU Schedule print ("Compiling for GPU") xi, yi = hl.Var("xi"), hl.Var("yi") output.compute_root().gpu_tile(x, y, 32, 32, GPU_Default) for j in range(J): blockw = 32 blockh = 16 if j > 3: blockw = 2 blockh = 2 if j > 0: inGPyramid[j].compute_root().gpu_tile(x, y, xi, yi, blockw, blockh, GPU_Default) if j > 0: gPyramid[j].compute_root().reorder(k, x, y).gpu_tile(x, y, xi, yi, blockw, blockh, GPU_Default) outGPyramid[j].compute_root().gpu_tile(x, y, xi, yi, blockw, blockh, GPU_Default) else: # CPU schedule print ("Compiling for CPU") output.parallel(y, 4).vectorize(x, 4); gray.compute_root().parallel(y, 4).vectorize(x, 4); for j in range(4): if j > 0: inGPyramid[j].compute_root().parallel(y, 4).vectorize(x, 4) if j > 0: gPyramid[j].compute_root().parallel(y, 4).vectorize(x, 4) outGPyramid[j].compute_root().parallel(y).vectorize(x, 4) for j in range(4,J): inGPyramid[j].compute_root().parallel(y) gPyramid[j].compute_root().parallel(k) outGPyramid[j].compute_root().parallel(y) return output
def main(): # Declare some Vars to use below. x, y = hl.Var ("x"), hl.Var ("y") # Load a grayscale image to use as an input. image_path = os.path.join(os.path.dirname(__file__), "../../tutorial/images/gray.png") input_data = imread(image_path) if True: # making the image smaller to go faster input_data = input_data[:160, :150] assert input_data.dtype == np.uint8 input = hl.Buffer(input_data) # You can define a hl.Func in multiple passes. Let's see a toy # example first. if True: # The first definition must be one like we have seen already # - a mapping from Vars to an hl.Expr: f = hl.Func("f") f[x, y] = x + y # We call this first definition the "pure" definition. # But the later definitions can include computed expressions on # both sides. The simplest example is modifying a single point: f[3, 7] = 42 # We call these extra definitions "update" definitions, or # "reduction" definitions. A reduction definition is an # update definition that recursively refers back to the # function's current value at the same site: if False: e = f[x, y] + 17 print("f[x, y] + 17", e) print("(f[x, y] + 17).type()", e.type()) print("(f[x, y]).type()", f[x,y].type()) f[x, y] = f[x, y] + 17 # If we confine our update to a single row, we can # recursively refer to values in the same column: f[x, 3] = f[x, 0] * f[x, 10] # Similarly, if we confine our update to a single column, we # can recursively refer to other values in the same row. f[0, y] = f[0, y] / f[3, y] # The general rule is: Each hl.Var used in an update definition # must appear unadorned in the same position as in the pure # definition in all references to the function on the left- # and right-hand sides. So the following definitions are # legal updates: f[x, 17] = x + 8 # x is used, so all uses of f must have x as the first argument. f[0, y] = y * 8 # y is used, so all uses of f must have y as the second argument. f[x, x + 1] = x + 8 f[y/2, y] = f[0, y] * 17 # But these ones would cause an error: # f[x, 0) = f[x + 1, 0) <- First argument to f on the right-hand-side must be 'x', not 'x + 1'. # f[y, y + 1) = y + 8 <- Second argument to f on the left-hand-side must be 'y', not 'y + 1'. # f[y, x) = y - x <- Arguments to f on the left-hand-side are in the wrong places. # f[3, 4) = x + y <- Free variables appear on the right-hand-side but not the left-hand-side. # We'll realize this one just to make sure it compiles. The # second-to-last definition forces us to realize over a # domain that is taller than it is wide. f.realize(100, 101) # For each realization of f, each step runs in its entirety # before the next one begins. Let's trace the loads and # stores for a simpler example: g = hl.Func("g") g[x, y] = x + y # Pure definition g[2, 1] = 42 # First update definition g[x, 0] = g[x, 1] # Second update definition g.trace_loads() g.trace_stores() g.realize(4, 4) # Reading the log, we see that each pass is applied in turn. The equivalent C is: result = np.empty( (4,4), dtype=np.int) # Pure definition for yy in range(4): for xx in range(4): result[yy][xx] = xx + yy # First update definition result[1][2] = 42 # Second update definition for xx in range(4): result[0][xx] = result[1][xx] # end of section # Putting update passes inside loops. if True: # Starting with this pure definition: f = hl.Func("f") f[x, y] = x + y # Say we want an update that squares the first fifty rows. We # could do this by adding 50 update definitions: # f[x, 0) = f[x, 0) * f[x, 0) # f[x, 1) = f[x, 1) * f[x, 1) # f[x, 2) = f[x, 2) * f[x, 2) # ... # f[x, 49) = f[x, 49) * f[x, 49) # Or equivalently using a compile-time loop in our C++: # for (int i = 0 i < 50 i++) { # f[x, i) = f[x, i) * f[x, i) # # But it's more manageable and more flexible to put the loop # in the generated code. We do this by defining a "reduction # domain" and using it inside an update definition: r = hl.RDom([(0, 50)]) f[x, r] = f[x, r] * f[x, r] halide_result = f.realize(100, 100) # The equivalent C is: c_result = np.empty((100, 100), dtype=np.int) for yy in range(100): for xx in range(100): c_result[yy][xx] = xx + yy for xx in range(100): for rr in range(50): # The loop over the reduction domain occurs inside of # the loop over any pure variables used in the update # step: c_result[rr][xx] = c_result[rr][xx] * c_result[rr][xx] # Check the results match: for yy in range(100): for xx in range(100): if halide_result[xx, yy] != c_result[yy][xx]: raise Exception("halide_result(%d, %d) = %d instead of %d" % ( xx, yy, halide_result[xx, yy], c_result[yy][xx])) return -1 # Now we'll examine a real-world use for an update definition: # computing a histogram. if True: # Some operations on images can't be cleanly expressed as a pure # function from the output coordinates to the value stored # there. The classic example is computing a histogram. The # natural way to do it is to iterate over the input image, # updating histogram buckets. Here's how you do that in Halide: histogram = hl.Func("histogram") # Histogram buckets start as zero. histogram[x] = 0 # Define a multi-dimensional reduction domain over the input image: r = hl.RDom([(0, input.width()), (0, input.height())]) # For every point in the reduction domain, increment the # histogram bucket corresponding to the intensity of the # input image at that point. histogram[input[r.x, r.y]] += 1 halide_result = histogram.realize(256) # The equivalent C is: c_result = np.empty((256), dtype=np.int) for xx in range(256): c_result[xx] = 0 for r_y in range(input.height()): for r_x in range(input.width()): c_result[input_data[r_x, r_y]] += 1 # Check the answers agree: for xx in range(256): if c_result[xx] != halide_result[xx]: raise Exception("halide_result(%d) = %d instead of %d" % ( xx, halide_result[xx], c_result[xx])) return -1 # Scheduling update steps if True: # The pure variables in an update step and can be # parallelized, vectorized, split, etc as usual. # Vectorizing, splitting, or parallelize the variables that # are part of the reduction domain is trickier. We'll cover # that in a later lesson. # Consider the definition: f = hl.Func("x") f[x, y] = x*y # Set the second row to equal the first row. f[x, 1] = f[x, 0] # Set the second column to equal the first column plus 2. f[1, y] = f[0, y] + 2 # The pure variables in each stage can be scheduled # independently. To control the pure definition, we schedule # as we have done in the past. The following code vectorizes # and parallelizes the pure definition only. f.vectorize(x, 4).parallel(y) # We use hl.Func::update(int) to get a handle to an update step # for the purposes of scheduling. The following line # vectorizes the first update step across x. We can't do # anything with y for this update step, because it doesn't # use y. f.update(0).vectorize(x, 4) # Now we parallelize the second update step in chunks of size # 4. yo, yi = hl.Var("yo"), hl.Var("yi") f.update(1).split(y, yo, yi, 4).parallel(yo) halide_result = f.realize(16, 16) # Here's the equivalent (serial) C: c_result = np.empty((16, 16), dtype=np.int) # Pure step. Vectorized in x and parallelized in y. for yy in range( 16): # Should be a parallel for loop for x_vec in range(4): xx = [x_vec*4, x_vec*4+1, x_vec*4+2, x_vec*4+3] c_result[yy][xx[0]] = xx[0] * yy c_result[yy][xx[1]] = xx[1] * yy c_result[yy][xx[2]] = xx[2] * yy c_result[yy][xx[3]] = xx[3] * yy # First update. Vectorized in x. for x_vec in range(4): xx = [x_vec*4, x_vec*4+1, x_vec*4+2, x_vec*4+3] c_result[1][xx[0]] = c_result[0][xx[0]] c_result[1][xx[1]] = c_result[0][xx[1]] c_result[1][xx[2]] = c_result[0][xx[2]] c_result[1][xx[3]] = c_result[0][xx[3]] # Second update. Parallelized in chunks of size 4 in y. for yo in range(4): # Should be a parallel for loop for yi in range(4): yy = yo*4 + yi c_result[yy][1] = c_result[yy][0] + 2 # Check the C and Halide results match: for yy in range( 16): for xx in range( 16 ): if halide_result[xx, yy] != c_result[yy][xx]: raise Exception("halide_result(%d, %d) = %d instead of %d" % ( xx, yy, halide_result[xx, yy], c_result[yy][xx])) return -1 # That covers how to schedule the variables within a hl.Func that # uses update steps, but what about producer-consumer # relationships that involve compute_at and store_at? Let's # examine a reduction as a producer, in a producer-consumer pair. if True: # Because an update does multiple passes over a stored array, # it's not meaningful to inline them. So the default schedule # for them does the closest thing possible. It computes them # in the innermost loop of their consumer. Consider this # trivial example: producer, consumer = hl.Func("producer"), hl.Func("consumer") producer[x] = x*17 producer[x] += 1 consumer[x] = 2 * producer[x] halide_result = consumer.realize(10) # The equivalent C is: c_result = np.empty((10), dtype=np.int) for xx in range(10): producer_storage = np.empty((1), dtype=np.int) # Pure step for producer producer_storage[0] = xx * 17 # Update step for producer producer_storage[0] = producer_storage[0] + 1 # Pure step for consumer c_result[xx] = 2 * producer_storage[0] # Check the results match for xx in range( 10 ): if halide_result[xx] != c_result[xx]: raise Exception("halide_result(%d) = %d instead of %d" % ( xx, halide_result[xx], c_result[xx])) return -1 # For all other compute_at/store_at options, the reduction # gets placed where you would expect, somewhere in the loop # nest of the consumer. # Now let's consider a reduction as a consumer in a # producer-consumer pair. This is a little more involved. if True: if True: # Case 1: The consumer references the producer in the pure step only. producer, consumer = hl.Func("producer"), hl.Func("consumer") # The producer is pure. producer[x] = x*17 consumer[x] = 2 * producer[x] consumer[x] += 1 # The valid schedules for the producer in this case are # the default schedule - inlined, and also: # # 1) producer.compute_at(x), which places the computation of # the producer inside the loop over x in the pure step of the # consumer. # # 2) producer.compute_root(), which computes all of the # producer ahead of time. # # 3) producer.store_root().compute_at(x), which allocates # space for the consumer outside the loop over x, but fills # it in as needed inside the loop. # # Let's use option 1. producer.compute_at(consumer, x) halide_result = consumer.realize(10) # The equivalent C is: c_result = np.empty((10), dtype=np.int) # Pure step for the consumer for xx in range( 10 ): # Pure step for producer producer_storage = np.empty((1), dtype=np.int) producer_storage[0] = xx * 17 c_result[xx] = 2 * producer_storage[0] # Update step for the consumer for xx in range( 10 ): c_result[xx] += 1 # All of the pure step is evaluated before any of the # update step, so there are two separate loops over x. # Check the results match for xx in range( 10 ): if halide_result[xx] != c_result[xx]: raise Exception("halide_result(%d) = %d instead of %d" % ( xx, halide_result[xx], c_result[xx])) return -1 if True: # Case 2: The consumer references the producer in the update step only producer, consumer = hl.Func("producer"), hl.Func("consumer") producer[x] = x * 17 consumer[x] = x consumer[x] += producer[x] # Again we compute the producer per x coordinate of the # consumer. This places producer code inside the update # step of the producer, because that's the only step that # uses the producer. producer.compute_at(consumer, x) # Note however, that we didn't say: # # producer.compute_at(consumer.update(0), x). # # Scheduling is done with respect to Vars of a hl.Func, and # the Vars of a hl.Func are shared across the pure and # update steps. halide_result = consumer.realize(10) # The equivalent C is: c_result = np.empty((10), dtype=np.int) # Pure step for the consumer for xx in range( 10 ): c_result[xx] = xx # Update step for the consumer for xx in range( 10 ): # Pure step for producer producer_storage = np.empty((1), dtype=np.int) producer_storage[0] = xx * 17 c_result[xx] += producer_storage[0] # Check the results match for xx in range( 10 ): if halide_result[xx] != c_result[xx]: raise Exception("halide_result(%d) = %d instead of %d" % ( xx, halide_result[xx], c_result[xx])) return -1 if True: # Case 3: The consumer references the producer in # multiple steps that share common variables producer, consumer = hl.Func("producer"), hl.Func("consumer") producer[x] = x * 17 consumer[x] = producer[x] * x consumer[x] += producer[x] # Again we compute the producer per x coordinate of the # consumer. This places producer code inside both the # pure and the update step of the producer. So there ends # up being two separate realizations of the producer, and # redundant work occurs. producer.compute_at(consumer, x) halide_result = consumer.realize(10) # The equivalent C is: c_result = np.empty((10), dtype=np.int) # Pure step for the consumer for xx in range( 10 ): # Pure step for producer producer_storage = np.empty((1), dtype=np.int) producer_storage[0] = xx * 17 c_result[xx] = producer_storage[0] * xx # Update step for the consumer for xx in range( 10 ): # Another copy of the pure step for producer producer_storage = np.empty((1), dtype=np.int) producer_storage[0] = xx * 17 c_result[xx] += producer_storage[0] # Check the results match for xx in range( 10 ): if halide_result[xx] != c_result[xx]: raise Exception("halide_result(%d) = %d instead of %d" % ( xx, halide_result[xx], c_result[xx])) return -1 if True: # Case 4: The consumer references the producer in # multiple steps that do not share common variables producer, consumer = hl.Func("producer"), hl.Func("consumer") producer[x, y] = x*y consumer[x, y] = x + y consumer[x, 0] = producer[x, x-1] consumer[0, y] = producer[y, y-1] # In this case neither producer.compute_at(consumer, x) # nor producer.compute_at(consumer, y) will work, because # either one fails to cover one of the uses of the # producer. So we'd have to inline producer, or use # producer.compute_root(). # Let's say we really really want producer to be # compute_at the inner loops of both consumer update # steps. Halide doesn't allow multiple different # schedules for a single hl.Func, but we can work around it # by making two wrappers around producer, and scheduling # those instead: # Attempt 2: producer_wrapper_1, producer_wrapper_2, consumer_2 = hl.Func(), hl.Func(), hl.Func() producer_wrapper_1[x, y] = producer[x, y] producer_wrapper_2[x, y] = producer[x, y] consumer_2[x, y] = x + y consumer_2[x, 0] += producer_wrapper_1[x, x-1] consumer_2[0, y] += producer_wrapper_2[y, y-1] # The wrapper functions give us two separate handles on # the producer, so we can schedule them differently. producer_wrapper_1.compute_at(consumer_2, x) producer_wrapper_2.compute_at(consumer_2, y) halide_result = consumer_2.realize(10, 10) # The equivalent C is: c_result = np.empty((10, 10), dtype=np.int) # Pure step for the consumer for yy in range( 10): for xx in range( 10 ): c_result[yy][xx] = xx + yy # First update step for consumer for xx in range( 10 ): producer_wrapper_1_storage = np.empty((1), dtype=np.int) producer_wrapper_1_storage[0] = xx * (xx-1) c_result[0][xx] += producer_wrapper_1_storage[0] # Second update step for consumer for yy in range( 10): producer_wrapper_2_storage = np.empty((1), dtype=np.int) producer_wrapper_2_storage[0] = yy * (yy-1) c_result[yy][0] += producer_wrapper_2_storage[0] # Check the results match for yy in range( 10): for xx in range( 10 ): if halide_result[xx, yy] != c_result[yy][xx]: print("halide_result(%d, %d) = %d instead of %d", xx, yy, halide_result[xx, yy], c_result[yy][xx]) return -1 if True: # Case 5: Scheduling a producer under a reduction domain # variable of the consumer. # We are not just restricted to scheduling producers at # the loops over the pure variables of the consumer. If a # producer is only used within a loop over a reduction # domain (hl.RDom) variable, we can also schedule the # producer there. producer, consumer = hl.Func("producer"), hl.Func("consumer") r = hl.RDom([(0, 5)]) producer[x] = x * 17 consumer[x] = x + 10 consumer[x] += r + producer[x + r] producer.compute_at(consumer, r) halide_result = consumer.realize(10) # The equivalent C is: c_result = np.empty((10), dtype=np.int) # Pure step for the consumer. for xx in range(10): c_result[xx] = xx + 10 # Update step for the consumer. for xx in range( 10 ): for rr in range(5): # The loop over the reduction domain is always the inner loop. # We've schedule the storage and computation of # the producer here. We just need a single value. producer_storage = np.empty((1), dtype=np.int) # Pure step of the producer. producer_storage[0] = (xx + rr) * 17 # Now use it in the update step of the consumer. c_result[xx] += rr + producer_storage[0] # Check the results match for xx in range( 10 ): if halide_result[xx] != c_result[xx]: raise Exception("halide_result(%d) = %d instead of %d" % ( xx, halide_result[xx], c_result[xx])) return -1 # A real-world example of a reduction inside a producer-consumer chain. if True: # The default schedule for a reduction is a good one for # convolution-like operations. For example, the following # computes a 5x5 box-blur of our grayscale test image with a # hl.clamp-to-edge boundary condition: # First add the boundary condition. clamped = hl.BoundaryConditions.repeat_edge(input) # Define a 5x5 box that starts at (-2, -2) r = hl.RDom([(-2, 5), (-2, 5)]) # Compute the 5x5 sum around each pixel. local_sum = hl.Func("local_sum") local_sum[x, y] = 0 # Compute the sum as a 32-bit integer local_sum[x, y] += clamped[x + r.x, y + r.y] # Divide the sum by 25 to make it an average blurry = hl.Func("blurry") blurry[x, y] = hl.cast(hl.UInt(8), local_sum[x, y] / 25) halide_result = blurry.realize(input.width(), input.height()) # The default schedule will inline 'clamped' into the update # step of 'local_sum', because clamped only has a pure # definition, and so its default schedule is fully-inlined. # We will then compute local_sum per x coordinate of blurry, # because the default schedule for reductions is # compute-innermost. Here's the equivalent C: #cast_to_uint8 = lambda x_: np.array([x_], dtype=np.uint8)[0] local_sum = np.empty((1), dtype=np.int32) c_result = hl.Buffer(hl.UInt(8), [input.width(), input.height()]) for yy in range(input.height()): for xx in range(input.width()): # FIXME this loop is quite slow # Pure step of local_sum local_sum[0] = 0 # Update step of local_sum for r_y in range(-2, 2+1): for r_x in range(-2, 2+1): # The clamping has been inlined into the update step. clamped_x = min(max(xx + r_x, 0), input.width()-1) clamped_y = min(max(yy + r_y, 0), input.height()-1) local_sum[0] += input[clamped_x, clamped_y] # Pure step of blurry #c_result(x, y) = (uint8_t)(local_sum[0] / 25) #c_result[xx, yy] = cast_to_uint8(local_sum[0] / 25) c_result[xx, yy] = int(local_sum[0] / 25) # hl.cast done internally # Check the results match for yy in range(input.height()): for xx in range(input.width()): if halide_result[xx, yy] != c_result[xx, yy]: raise Exception("halide_result(%d, %d) = %d instead of %d" % (xx, yy, halide_result[xx, yy], c_result[xx, yy])) return -1 # Reduction helpers. if True: # There are several reduction helper functions provided in # Halide.h, which compute small reductions and schedule them # innermost into their consumer. The most useful one is # "sum". f1 = hl.Func ("f1") r = hl.RDom([(0, 100)]) f1[x] = hl.sum(r + x) * 7 # Sum creates a small anonymous hl.Func to do the reduction. It's equivalent to: f2, anon = hl.Func("f2"), hl.Func("anon") anon[x] = 0 anon[x] += r + x f2[x] = anon[x] * 7 # So even though f1 references a reduction domain, it is a # pure function. The reduction domain has been swallowed to # define the inner anonymous reduction. halide_result_1 = f1.realize(10) halide_result_2 = f2.realize(10) # The equivalent C is: c_result = np.empty((10), dtype=np.int) for xx in range( 10 ): anon = np.empty((1), dtype=np.int) anon[0] = 0 for rr in range(100): anon[0] += rr + xx c_result[xx] = anon[0] * 7 # Check they all match. for xx in range( 10 ): if halide_result_1[xx] != c_result[xx]: print("halide_result_1(%d) = %d instead of %d", xx, halide_result_1[xx], c_result[xx]) return -1 if halide_result_2[xx] != c_result[xx]: print("halide_result_2(%d) = %d instead of %d", xx, halide_result_2[xx], c_result[xx]) return -1 # A complex example that uses reduction helpers. if False: # non-sense to port SSE code to python, skipping this test # Other reduction helpers include "product", "minimum", # "maximum", "hl.argmin", and "argmax". Using hl.argmin and argmax # requires understanding tuples, which come in a later # lesson. Let's use minimum and maximum to compute the local # spread of our grayscale image. # First, add a boundary condition to the input. clamped = hl.Func("clamped") x_clamped = hl.clamp(x, 0, input.width()-1) y_clamped = hl.clamp(y, 0, input.height()-1) clamped[x, y] = input[x_clamped, y_clamped] box = hl.RDom([(-2, 5), (-2, 5)]) # Compute the local maximum minus the local minimum: spread = hl.Func("spread") spread[x, y] = (maximum(clamped(x + box.x, y + box.y)) - minimum(clamped(x + box.x, y + box.y))) # Compute the result in strips of 32 scanlines yo, yi = hl.Var("yo"), hl.Var("yi") spread.split(y, yo, yi, 32).parallel(yo) # Vectorize across x within the strips. This implicitly # vectorizes stuff that is computed within the loop over x in # spread, which includes our minimum and maximum helpers, so # they get vectorized too. spread.vectorize(x, 16) # We'll apply the boundary condition by padding each scanline # as we need it in a circular buffer (see lesson 08). clamped.store_at(spread, yo).compute_at(spread, yi) halide_result = spread.realize(input.width(), input.height()) # The C equivalent is almost too horrible to contemplate (and # took me a long time to debug). This time I want to time # both the Halide version and the C version, so I'll use sse # intrinsics for the vectorization, and openmp to do the # parallel for loop (you'll need to compile with -fopenmp or # similar to get correct timing). #ifdef __SSE2__ # Don't include the time required to allocate the output buffer. c_result = hl.Buffer(hl.UInt(8), input.width(), input.height()) #ifdef _OPENMP t1 = datetime.now() #endif # Run this one hundred times so we can average the timing results. for iters in range(100): pass # #pragma omp parallel for # for yo in range((input.height() + 31)/32): # y_base = hl.min(yo * 32, input.height() - 32) # # # Compute clamped in a circular buffer of size 8 # # (smallest power of two greater than 5). Each thread # # needs its own allocation, so it must occur here. # # clamped_width = input.width() + 4 # clamped_storage = np.empty((clamped_width * 8), dtype=np.uint8) # # for yi in range(32): # y = y_base + yi # # uint8_t *output_row = &c_result(0, y) # # # Compute clamped for this scanline, skipping rows # # already computed within this slice. # int min_y_clamped = (yi == 0) ? (y - 2) : (y + 2) # int max_y_clamped = (y + 2) # for (int cy = min_y_clamped cy <= max_y_clamped cy++) { # # Figure out which row of the circular buffer # # we're filling in using bitmasking: # uint8_t *clamped_row = clamped_storage + (cy & 7) * clamped_width # # # Figure out which row of the input we're reading # # from by clamping the y coordinate: # int clamped_y = std::hl.min(std::hl.max(cy, 0), input.height()-1) # uint8_t *input_row = &input(0, clamped_y) # # # Fill it in with the padding. # for (int x = -2 x < input.width() + 2 ): # int clamped_x = std::hl.min(std::hl.max(x, 0), input.width()-1) # *clamped_row++ = input_row[clamped_x] # # # # # Now iterate over vectors of x for the pure step of the output. # for (int x_vec = 0 x_vec < (input.width() + 15)/16 x_vec++) { # int x_base = std::hl.min(x_vec * 16, input.width() - 16) # # # Allocate storage for the minimum and maximum # # helpers. One vector is enough. # __m128i minimum_storage, maximum_storage # # # The pure step for the maximum is a vector of zeros # maximum_storage = (__m128i)_mm_setzero_ps() # # # The update step for maximum # for (int max_y = y - 2 max_y <= y + 2 max_y++) { # uint8_t *clamped_row = clamped_storage + (max_y & 7) * clamped_width # for (int max_x = x_base - 2 max_x <= x_base + 2 max_): # __m128i v = _mm_loadu_si128((__m128i const *)(clamped_row + max_x + 2)) # maximum_storage = _mm_max_epu8(maximum_storage, v) # # # # # The pure step for the minimum is a vector of # # ones. Create it by comparing something to # # itself. # minimum_storage = (__m128i)_mm_cmpeq_ps(_mm_setzero_ps(), # _mm_setzero_ps()) # # # The update step for minimum. # for (int min_y = y - 2 min_y <= y + 2 min_y++) { # uint8_t *clamped_row = clamped_storage + (min_y & 7) * clamped_width # for (int min_x = x_base - 2 min_x <= x_base + 2 min_): # __m128i v = _mm_loadu_si128((__m128i const *)(clamped_row + min_x + 2)) # minimum_storage = _mm_min_epu8(minimum_storage, v) # # # # # Now compute the spread. # __m128i spread = _mm_sub_epi8(maximum_storage, minimum_storage) # # # Store it. # _mm_storeu_si128((__m128i *)(output_row + x_base), spread) # # # # del clamped_storage # # end of hundred iterations # Skip the timing comparison if we don't have openmp # enabled. Otherwise it's unfair to C. #ifdef _OPENMP t2 = datetime.now() # Now run the Halide version again without the # jit-compilation overhead. Also run it one hundred times. for iters in range(100): spread.realize(halide_result) t3 = datetime.now() # Report the timings. On my machine they both take about 3ms # for the 4-megapixel input (fast!), which makes sense, # because they're using the same vectorization and # parallelization strategy. However I find the Halide easier # to read, write, debug, modify, and port. print("Halide spread took %f ms. C equivalent took %f ms" % ( (t3 - t2).total_seconds() * 1000, (t2 - t1).total_seconds() * 1000)) #endif # _OPENMP # Check the results match: for yy in range(input.height()): for xx in range(input.width()): if halide_result(xx, yy) != c_result(xx, yy): raise Exception("halide_result(%d, %d) = %d instead of %d" % ( xx, yy, halide_result(xx, yy), c_result(xx, yy))) return -1 #endif # __SSE2__ else: print("(Skipped the SSE2 section of the code, " "since non-sense in python world.)") print("Success!") return 0
def test_schedules(verbose=False, test_random=False): #random_module.seed(int(sys.argv[1]) if len(sys.argv)>1 else 0) halide.exit_on_signal() f = halide.Func('f') x = halide.Var('x') y = halide.Var('y') c = halide.Var('c') g = halide.Func('g') v = halide.Var('v') input = halide.UniformImage(halide.UInt(16), 3) int_t = halide.Int(32) f[x,y,c] = input[halide.clamp(x,halide.cast(int_t,0),halide.cast(int_t,input.width()-1)), halide.clamp(y,halide.cast(int_t,0),halide.cast(int_t,input.height()-1)), halide.clamp(c,halide.cast(int_t,0),halide.cast(int_t,2))] #g[v] = f[v,v] g[x,y,c] = f[x,y,c]+1 assert sorted(halide.all_vars(g).keys()) == sorted(['x', 'y', 'c']) #, 'v']) if verbose: print halide.func_varlist(f) print 'caller_vars(f) =', caller_vars(g, f) print 'caller_vars(g) =', caller_vars(g, g) # validL = list(valid_schedules(g, f, 4)) # validL = [repr(_x) for _x in validL] # # for L in sorted(validL): # print repr(L) T0 = time.time() if not test_random: random = True #False nvalid_determ = 0 for L in schedules_func(g, f, 0, 3): nvalid_determ += 1 if verbose: print L nvalid_random = 0 for i in range(100): for L in schedules_func(g, f, 0, DEFAULT_MAX_DEPTH, random=True): #sorted([repr(_x) for _x in valid_schedules(g, f, 3)]): if verbose and 0: print L#repr(L) nvalid_random += 1 s = [] for i in range(400): d = random_schedule(g, 0, DEFAULT_MAX_DEPTH) si = str(d) s.append(si) if verbose: print 'Schedule:', si d.apply() evaluate = d.test((36, 36, 3), input) print 'evaluate' evaluate() if test_random: print 'Success' sys.exit() T1 = time.time() s = '\n'.join(s) assert 'f.chunk(_c0)' in s assert 'f.root().vectorize' in s assert 'f.root().unroll' in s assert 'f.root().split' in s assert 'f.root().tile' in s assert 'f.root().parallel' in s assert 'f.root().transpose' in s assert nvalid_random == 100 if verbose: print 'generated in %.3f secs' % (T1-T0) print 'random_schedule: OK'
def main(): # This program defines a single-stage imaging pipeline that # brightens an image. # First we'll load the input image we wish to brighten. image_path = os.path.join(os.path.dirname(__file__), "../../tutorial/images/rgb.png") # We create a hl.Buffer object to wrap the numpy array input = hl.Buffer(imread(image_path)) assert input.type() == hl.UInt(8) # Next we define our hl.Func object that represents our one pipeline # stage. brighter = hl.Func("brighter") # Our hl.Func will have three arguments, representing the position # in the image and the color channel. Halide treats color # channels as an extra dimension of the image. x, y, c = hl.Var("x"), hl.Var("y"), hl.Var("c") # Normally we'd probably write the whole function definition on # one line. Here we'll break it apart so we can explain what # we're doing at every step. # For each pixel of the input image. value = input[x, y, c] assert type(value) == hl.Expr # Cast it to a floating point value. value = hl.cast(hl.Float(32), value) # Multiply it by 1.5 to brighten it. Halide represents real # numbers as floats, not doubles, so we stick an 'f' on the end # of our constant. value = value * 1.5 # Clamp it to be less than 255, so we don't get overflow when we # hl.cast it back to an 8-bit unsigned int. value = hl.min(value, 255.0) # Cast it back to an 8-bit unsigned integer. value = hl.cast(hl.UInt(8), value) # Define the function. brighter[x, y, c] = value # The equivalent one-liner to all of the above is: # # brighter(x, y, c) = hl.cast<uint8_t>(hl.min(input(x, y, c) * 1.5f, 255)) # brighter[x, y, c] = hl.cast(hl.UInt(8), hl.min(input[x, y, c] * 1.5, 255)) # # In the shorter version: # - I skipped the hl.cast to float, because multiplying by 1.5f does # that automatically. # - I also used integer constants in hl.clamp, because they get hl.cast # to match the type of the first argument. # - I left the h. off hl.clamp. It's unnecessary due to Koenig # lookup. # Remember. All we've done so far is build a representation of a # Halide program in memory. We haven't actually processed any # pixels yet. We haven't even compiled that Halide program yet. # So now we'll realize the hl.Func. The size of the output image # should match the size of the input image. If we just wanted to # brighten a portion of the input image we could request a # smaller size. If we request a larger size Halide will throw an # error at runtime telling us we're trying to read out of bounds # on the input image. output_image = brighter.realize(input.width(), input.height(), input.channels()) assert output_image.type() == hl.UInt(8) # Save the output for inspection. It should look like a bright parrot. imsave("brighter.png", output_image) print("Created brighter.png result file.") print("Success!") return 0
def main(): # All Exprs have a scalar type, and all Funcs evaluate to one or # more scalar types. The scalar types in Halide are unsigned # integers of various bit widths, signed integers of the same set # of bit widths, floating point numbers in single and double # precision, and opaque handles (equivalent to void *). The # following array contains all the legal types. valid_halide_types = [ hl.UInt(8), hl.UInt(16), hl.UInt(32), hl.UInt(64), hl.Int(8), hl.Int(16), hl.Int(32), hl.Int(64), hl.Float(32), hl.Float(64), hl.Handle() ] # Constructing and inspecting types. if True: # You can programmatically examine the properties of a Halide # type. This is useful when you write a C++ function that has # hl.Expr arguments and you wish to check their types: assert hl.UInt(8).bits() == 8 assert hl.Int(8).is_int() # You can also programmatically construct Types as a function of other Types. t = hl.UInt(8) t = t.with_bits(t.bits() * 2) assert t == hl.UInt(16) # Or construct a Type from a C++ scalar type #assert type_of<float>() == hl.Float(32) # The Type struct is also capable of representing vector types, # but this is reserved for Halide's internal use. You should # vectorize code by using hl.Func::vectorize, not by attempting to # construct vector expressions directly. You may encounter vector # types if you programmatically manipulate lowered Halide code, # but this is an advanced topic (see hl.Func::add_custom_lowering_pass). # You can query any Halide hl.Expr for its type. An hl.Expr # representing a hl.Var has type hl.Int(32): x = hl.Var("x") assert hl.Expr(x).type() == hl.Int(32) # Most transcendental functions in Halide hl.cast their inputs to a # hl.Float(32) and return a hl.Float(32): assert hl.sin(x).type() == hl.Float(32) # You can hl.cast an hl.Expr from one Type to another using the hl.cast operator: assert hl.cast(hl.UInt(8), x).type() == hl.UInt(8) # This also comes in a template form that takes a C++ type. #assert hl.cast<uint8_t>(x).type() == hl.UInt(8) # You can also query any defined hl.Func for the types it produces. f1 = hl.Func("f1") f1[x] = hl.cast(hl.UInt(8), x) assert f1.output_types()[0] == hl.UInt(8) f2 = hl.Func("f2") f2[x] = (x, hl.sin(x)) assert f2.output_types()[0] == hl.Int(32) and \ f2.output_types()[1] == hl.Float(32) # Type promotion rules. if True: # When you combine Exprs of different types (e.g. using '+', # '*', etc), Halide uses a system of type promotion # rules. These differ to C's rules. To demonstrate these # we'll make some Exprs of each type. x = hl.Var("x") u8 = hl.cast(hl.UInt(8), x) u16 = hl.cast(hl.UInt(16), x) u32 = hl.cast(hl.UInt(32), x) u64 = hl.cast(hl.UInt(64), x) s8 = hl.cast(hl.Int(8), x) s16 = hl.cast(hl.Int(16), x) s32 = hl.cast(hl.Int(32), x) s64 = hl.cast(hl.Int(64), x) f32 = hl.cast(hl.Float(32), x) f64 = hl.cast(hl.Float(64), x) # The rules are as follows, and are applied in the order they are # written below. # 1) It is an error to hl.cast or use arithmetic operators on Exprs of type hl.Handle(). # 2) If the types are the same, then no type conversions occur. for t in valid_halide_types: # Skip the handle type. if t.is_handle(): continue e = hl.cast(t, x) assert (e + e).type() == e.type() # 3) If one type is a float but the other is not, then the # non-float argument is promoted to a float (possibly causing a # loss of precision for large integers). assert (u8 + f32).type() == hl.Float(32) assert (f32 + s64).type() == hl.Float(32) assert (u16 + f64).type() == hl.Float(64) assert (f64 + s32).type() == hl.Float(64) # 4) If both types are float, then the narrower argument is # promoted to the wider bit-width. assert (f64 + f32).type() == hl.Float(64) # The rules above handle all the floating-point cases. The # following three rules handle the integer cases. # 5) If one of the expressions is an integer constant, then it is # coerced to the type of the other expression. assert (u32 + 3).type() == hl.UInt(32) assert (3 + s16).type() == hl.Int(16) # If this rule would cause the integer to overflow, then Halide # will trigger an error, e.g. uncommenting the following line # will cause this program to terminate with an error. # hl.Expr bad = u8 + 257 # 6) If both types are unsigned integers, or both types are # signed integers, then the narrower argument is promoted to # wider type. assert (u32 + u8).type() == hl.UInt(32) assert (s16 + s64).type() == hl.Int(64) # 7) If one type is signed and the other is unsigned, both # arguments are promoted to a signed integer with the greater of # the two bit widths. assert (u8 + s32).type() == hl.Int(32) assert (u32 + s8).type() == hl.Int(32) # Note that this may silently overflow the unsigned type in the # case where the bit widths are the same. assert (u32 + s32).type() == hl.Int(32) if False: # evaluate<X> not yet exposed to python # When an unsigned hl.Expr is converted to a wider signed type in # this way, it is first widened to a wider unsigned type # (zero-extended), and then reinterpreted as a signed # integer. I.e. casting the hl.UInt(8) value 255 to an hl.Int(32) # produces 255, not -1. #int32_t result32 = evaluate<int>(hl.cast<int32_t>(hl.cast<uint8_t>(255))) assert result32 == 255 # When a signed type is explicitly converted to a wider unsigned # type with the hl.cast operator (the type promotion rules will # never do this automatically), it is first converted to the # wider signed type (sign-extended), and then reinterpreted as # an unsigned integer. I.e. casting the hl.Int(8) value -1 to a # hl.UInt(16) produces 65535, not 255. #uint16_t result16 = evaluate<uint16_t>(hl.cast<uint16_t>(hl.cast<int8_t>(-1))) assert result16 == 65535 # The type hl.Handle(). if True: # hl.Handle is used to represent opaque pointers. Applying # type_of to any pointer type will return hl.Handle() #assert type_of<void *>() == hl.Handle() #assert type_of<const char * const **>() == hl.Handle() # (not clear what the proper python version would be) # Handles are always stored as 64-bit, regardless of the compilation # target. assert hl.Handle().bits() == 64 # The main use of an hl.Expr of type hl.Handle is to pass # it through Halide to other external code. # Generic code. if True: # The main explicit use of Type in Halide is to write Halide # code parameterized by a Type. In C++ you'd do this with # templates. In Halide there's no need - you can inspect and # modify the types dynamically at C++ runtime instead. The # function defined below averages two expressions of any # equal numeric type. x = hl.Var("x") assert average(hl.cast(hl.Float(32), x), 3.0).type() == hl.Float(32) assert average(x, 3).type() == hl.Int(32) assert average(hl.cast(hl.UInt(8), x), hl.cast(hl.UInt(8), 3)).type() == hl.UInt(8) print("Success!") return 0
def get_bilateral_grid(input, r_sigma, s_sigma): x = hl.Var('x') y = hl.Var('y') z = hl.Var('z') c = hl.Var('c') xi = hl.Var("xi") yi = hl.Var("yi") zi = hl.Var("zi") # Add a boundary condition clamped = hl.Func('clamped') clamped[x, y] = input[hl.clamp(x, 0, input.width()-1), hl.clamp(y, 0, input.height()-1)] # Construct the bilateral grid r = hl.RDom(0, s_sigma, 0, s_sigma, 'r') val = clamped[x * s_sigma + r.x - s_sigma//2, y * s_sigma + r.y - s_sigma//2] val = hl.clamp(val, 0.0, 1.0) #zi = hl.cast(int_t, val * (1.0/r_sigma) + 0.5) zi = hl.cast(int_t, (val / r_sigma) + 0.5) histogram = hl.Func('histogram') histogram[x, y, z, c] = 0.0 histogram[x, y, zi, c] += hl.select(c == 0, val, 1.0) # Blur the histogram using a five-tap filter blurx, blury, blurz = hl.Func('blurx'), hl.Func('blury'), hl.Func('blurz') blurz[x, y, z, c] = histogram[x, y, z-2, c] + histogram[x, y, z-1, c]*4 + histogram[x, y, z, c]*6 + histogram[x, y, z+1, c]*4 + histogram[x, y, z+2, c] blurx[x, y, z, c] = blurz[x-2, y, z, c] + blurz[x-1, y, z, c]*4 + blurz[x, y, z, c]*6 + blurz[x+1, y, z, c]*4 + blurz[x+2, y, z, c] blury[x, y, z, c] = blurx[x, y-2, z, c] + blurx[x, y-1, z, c]*4 + blurx[x, y, z, c]*6 + blurx[x, y+1, z, c]*4 + blurx[x, y+2, z, c] # Take trilinear samples to compute the output val = hl.clamp(clamped[x, y], 0.0, 1.0) zv = val / r_sigma zi = hl.cast(int_t, zv) zf = zv - zi xf = hl.cast(float_t, x % s_sigma) / s_sigma yf = hl.cast(float_t, y % s_sigma) / s_sigma xi = x/s_sigma yi = y/s_sigma interpolated = hl.Func('interpolated') interpolated[x, y, c] = hl.lerp(hl.lerp(hl.lerp(blury[xi, yi, zi, c], blury[xi+1, yi, zi, c], xf), hl.lerp(blury[xi, yi+1, zi, c], blury[xi+1, yi+1, zi, c], xf), yf), hl.lerp(hl.lerp(blury[xi, yi, zi+1, c], blury[xi+1, yi, zi+1, c], xf), hl.lerp(blury[xi, yi+1, zi+1, c], blury[xi+1, yi+1, zi+1, c], xf), yf), zf) # Normalize bilateral_grid = hl.Func('bilateral_grid') bilateral_grid[x, y] = interpolated[x, y, 0]/interpolated[x, y, 1] target = hl.get_target_from_environment() if target.has_gpu_feature(): #if True: # GPU schedule # Currently running this directly from the Python code is very slow. # Probably because of the dispatch time because generated code # is same speed as C++ generated code. print ("Compiling for GPU.") histogram.compute_root().reorder(c, z, x, y).gpu_tile(x, y, 8, 8); histogram = histogram.update() # Because returns ScheduleHandle histogram.reorder(c, r.x, r.y, x, y).gpu_tile(x, y, xi, yi, 8, 8).unroll(c) blurx.compute_root().gpu_tile(x, y, z, xi, yi, zi, 16, 16, 1) blury.compute_root().gpu_tile(x, y, z, xi, yi, zi, 16, 16, 1) blurz.compute_root().gpu_tile(x, y, z, xi, yi, zi, 8, 8, 4) bilateral_grid.compute_root().gpu_tile(x, y, xi, yi, s_sigma, s_sigma) else: # CPU schedule print ("Compiling for CPU.") histogram.compute_root().parallel(z) histogram = histogram.update() # Because returns ScheduleHandle histogram.reorder(c, r.x, r.y, x, y).unroll(c) blurz.compute_root().reorder(c, z, x, y).parallel(y).vectorize(x, 4).unroll(c) blurx.compute_root().reorder(c, x, y, z).parallel(z).vectorize(x, 4).unroll(c) blury.compute_root().reorder(c, x, y, z).parallel(z).vectorize(x, 4).unroll(c) bilateral_grid.compute_root().parallel(y).vectorize(x, 4) return bilateral_grid
def main(): # First we'll declare some Vars to use below. x, y, c = hl.Var("x"), hl.Var("y"), hl.Var("c") image_path = os.path.join(os.path.dirname(__file__), "../../tutorial/images/rgb.png") # Now we'll express a multi-stage pipeline that blurs an image # first horizontally, and then vertically. if True: # Take a color 8-bit input input = hl.Buffer(imread(image_path)) assert input.type() == hl.UInt(8) # Upgrade it to 16-bit, so we can do math without it overflowing. input_16 = hl.Func("input_16") input_16[x, y, c] = hl.cast(hl.UInt(16), input[x, y, c]) # Blur it horizontally: blur_x = hl.Func("blur_x") blur_x[x, y, c] = (input_16[x - 1, y, c] + 2 * input_16[x, y, c] + input_16[x + 1, y, c]) / 4 # Blur it vertically: blur_y = hl.Func("blur_y") blur_y[x, y, c] = (blur_x[x, y - 1, c] + 2 * blur_x[x, y, c] + blur_x[x, y + 1, c]) / 4 # Convert back to 8-bit. output = hl.Func("output") output[x, y, c] = hl.cast(hl.UInt(8), blur_y[x, y, c]) # Each hl.Func in this pipeline calls a previous one using # familiar function call syntax (we've overloaded operator() # on hl.Func objects). A hl.Func may call any other hl.Func that has # been given a definition. This restriction prevents # pipelines with loops in them. Halide pipelines are always # feed-forward graphs of Funcs. # Now let's realize it... # result = output.realize(input.width(), input.height(), 3) # Except that the line above is not going to work. Uncomment # it to see what happens. # Realizing this pipeline over the same domain as the input # image requires reading pixels out of bounds in the input, # because the blur_x stage reaches outwards horizontally, and # the blur_y stage reaches outwards vertically. Halide # detects this by injecting a piece of code at the top of the # pipeline that computes the region over which the input will # be read. When it starts to run the pipeline it first runs # this code, determines that the input will be read out of # bounds, and refuses to continue. No actual bounds checks # occur in the inner loop that would be slow. # # So what do we do? There are a few options. If we realize # over a domain shifted inwards by one pixel, we won't be # asking the Halide routine to read out of bounds. We saw how # to do this in the previous lesson: result = hl.Buffer(hl.UInt(8), [input.width() - 2, input.height() - 2, 3]) result.set_min([1, 1]) output.realize(result) # Save the result. It should look like a slightly blurry # parrot, and it should be two pixels narrower and two pixels # shorter than the input image. imsave("blurry_parrot_1.png", result) print("Created blurry_parrot_1.png") # This is usually the fastest way to deal with boundaries: # don't write code that reads out of bounds :) The more # general solution is our next example. # The same pipeline, with a boundary condition on the input. if True: # Take a color 8-bit input input = hl.Buffer(imread(image_path)) assert input.type() == hl.UInt(8) # This time, we'll wrap the input in a hl.Func that prevents # reading out of bounds: clamped = hl.Func("clamped") # Define an expression that clamps x to lie within the the # range [0, input.width()-1]. clamped_x = hl.clamp(x, 0, input.width() - 1) # Similarly hl.clamp y. clamped_y = hl.clamp(y, 0, input.height() - 1) # Load from input at the clamped coordinates. This means that # no matter how we evaluated the hl.Func 'clamped', we'll never # read out of bounds on the input. This is a hl.clamp-to-edge # style boundary condition, and is the simplest boundary # condition to express in Halide. clamped[x, y, c] = input[clamped_x, clamped_y, c] # Defining 'clamped' in that way can be done more concisely # using a helper function from the BoundaryConditions # namespace like so: # # clamped = hl.BoundaryConditions.repeat_edge(input) # # These are important to use for other boundary conditions, # because they are expressed in the way that Halide can best # understand and optimize. # Upgrade it to 16-bit, so we can do math without it # overflowing. This time we'll refer to our new hl.Func # 'clamped', instead of referring to the input image # directly. input_16 = hl.Func("input_16") input_16[x, y, c] = hl.cast(hl.UInt(16), clamped[x, y, c]) # The rest of the pipeline will be the same... # Blur it horizontally: blur_x = hl.Func("blur_x") blur_x[x, y, c] = (input_16[x - 1, y, c] + 2 * input_16[x, y, c] + input_16[x + 1, y, c]) / 4 # Blur it vertically: blur_y = hl.Func("blur_y") blur_y[x, y, c] = (blur_x[x, y - 1, c] + 2 * blur_x[x, y, c] + blur_x[x, y + 1, c]) / 4 # Convert back to 8-bit. output = hl.Func("output") output[x, y, c] = hl.cast(hl.UInt(8), blur_y[x, y, c]) # This time it's safe to evaluate the output over the some # domain as the input, because we have a boundary condition. result = output.realize(input.width(), input.height(), 3) # Save the result. It should look like a slightly blurry # parrot, but this time it will be the same size as the # input. imsave("blurry_parrot_2.png", result) print("Created blurry_parrot_2.png") print("Success!") return 0
def findStereoCorrespondence(left, right, SADWindowSize, minDisparity, numDisparities, xmin, xmax, ymin, ymax, x_tile_size=32, y_tile_size=32, test=False, uniquenessRatio=0.15, disp12MaxDiff=1): """ Returns Func (left: Func, right: Func) """ x, y, c, d = Var("x"), Var("y"), Var("c"), Var("d") diff = Func("diff") diff[d, x, y] = h.cast(UInt(16), h.abs(left[x, y] - right[x-d, y])) win2 = SADWindowSize/2 diff_T = Func("diff_T") xi, xo, yi, yo = Var("xi"), Var("xo"), Var("yi"), Var("yo") diff_T[d, xi, yi, xo, yo] = diff[d, xi + xo * x_tile_size + xmin, yi + yo * y_tile_size + ymin] cSAD, vsum = Func("cSAD"), Func("vsum") rk = RDom(-win2, SADWindowSize, "rk") rxi, ryi = RDom(1, x_tile_size - 1, "rxi"), RDom(1, y_tile_size - 1, "ryi") if test: vsum[d, xi, yi, xo, yo] = h.sum(diff_T[d, xi, yi+rk, xo, yo]) cSAD[d, xi, yi, xo, yo] = h.sum(vsum[d, xi+rk, yi, xo, yo]) else: vsum[d, xi, yi, xo, yo] = h.select(yi != 0, h.cast(UInt(16), 0), h.sum(diff_T[d, xi, rk, xo, yo])) vsum[d, xi, ryi, xo, yo] = vsum[d, xi, ryi-1, xo, yo] + diff_T[d, xi, ryi+win2, xo, yo] - diff_T[d, xi, ryi-win2-1, xo, yo] cSAD[d, xi, yi, xo, yo] = h.select(xi != 0, h.cast(UInt(16), 0), h.sum(vsum[d, rk, yi, xo, yo])) cSAD[d, rxi, yi, xo, yo] = cSAD[d, rxi-1, yi, xo, yo] + vsum[d, rxi+win2, yi, xo, yo] - vsum[d, rxi-win2-1, yi, xo, yo] rd = RDom(minDisparity, numDisparities) disp_left = Func("disp_left") disp_left[xi, yi, xo, yo] = h.Tuple(h.cast(UInt(16), minDisparity), h.cast(UInt(16), (2<<16)-1)) disp_left[xi, yi, xo, yo] = h.tuple_select( cSAD[rd, xi, yi, xo, yo] < disp_left[xi, yi, xo, yo][1], h.Tuple(h.cast(UInt(16), rd), cSAD[rd, xi, yi, xo, yo]), h.Tuple(disp_left[xi, yi, xo, yo])) FILTERED = -16 disp = Func("disp") disp[x, y] = h.select( # x > xmax-xmin or y > ymax-ymin, x < xmax, h.cast(UInt(16), disp_left[x % x_tile_size, y % y_tile_size, x / x_tile_size, y / y_tile_size][0]), h.cast(UInt(16), FILTERED)) # Schedule vector_width = 8 disp.compute_root() \ .tile(x, y, xo, yo, xi, yi, x_tile_size, y_tile_size).reorder(xi, yi, xo, yo) \ .vectorize(xi, vector_width).parallel(xo).parallel(yo) # reorder storage disp_left.reorder_storage(xi, yi, xo, yo) diff_T .reorder_storage(xi, yi, xo, yo, d) vsum .reorder_storage(xi, yi, xo, yo, d) cSAD .reorder_storage(xi, yi, xo, yo, d) disp_left.compute_at(disp, xo).reorder(xi, yi, xo, yo) \ .vectorize(xi, vector_width) \ .update() \ .reorder(xi, yi, rd, xo, yo).vectorize(xi, vector_width) if test: cSAD.compute_at(disp_left, rd).reorder(xi, yi, xo, yo, d).vectorize(xi, vector_width) vsum.compute_at(disp_left, rd).reorder(xi, yi, xo, yo, d).vectorize(xi, vector_width) else: cSAD.compute_at(disp_left, rd).reorder(xi, yi, xo, yo, d).vectorize(xi, vector_width) \ .update() \ .reorder(yi, rxi, xo, yo, d).vectorize(yi, vector_width) vsum.compute_at(disp_left, rd).reorder(xi, yi, xo, yo, d).vectorize(xi, vector_width) \ .update() \ .reorder(xi, ryi, xo, yo, d).vectorize(xi, vector_width) return disp