示例#1
0
    return image, label


batch_size = 8
eval_batch_size = 8

ds_train, ds_eval, steps_per_epoch, eval_steps = make_darts_cifar10_dataset(
    batch_size,
    eval_batch_size,
    transform,
    drop_remainder=True,
    sub_ratio=0.001)

setup_runtime(fp16=True)
ds_train, ds_eval = distribute_datasets(ds_train, ds_eval)

set_defaults({
    'bn': {
        'affine': False,
        'track_running_stats': False,
    },
})

set_primitives('tiny')

model = Network(4, 5)
model.build((None, 32, 32, 3))

criterion = CrossEntropy()
示例#2
0
    if training:
        image = cutout(image, 16)

    label = tf.one_hot(label, 10)

    return image, label


mul = 1
batch_size = 32 * mul
eval_batch_size = batch_size
ds_train, ds_test, steps_per_epoch, test_steps = make_cifar10_dataset(
    batch_size, eval_batch_size, transform, sub_ratio=0.01)

setup_runtime(fp16=True)
ds_train, ds_test = distribute_datasets(ds_train, ds_test)

PC_DARTS_cifar = Genotype(normal=[('sep_conv_3x3', 1), ('skip_connect', 0),
                                  ('sep_conv_3x3', 0), ('dil_conv_3x3', 1),
                                  ('sep_conv_5x5', 0), ('sep_conv_3x3', 1),
                                  ('avg_pool_3x3', 0), ('dil_conv_3x3', 1)],
                          normal_concat=[2, 3, 4, 5],
                          reduce=[('sep_conv_5x5', 1), ('max_pool_3x3', 0),
                                  ('sep_conv_5x5', 1), ('sep_conv_5x5', 2),
                                  ('sep_conv_3x3', 0), ('sep_conv_3x3', 3),
                                  ('sep_conv_3x3', 1), ('sep_conv_3x3', 2)],
                          reduce_concat=[2, 3, 4, 5])

drop_path = 0.3
model = NASNet(16, 8, True, drop_path, 10, PC_DARTS_cifar)
model.build((None, 32, 32, 3))
示例#3
0
def objective(trial: optuna.Trial):

    cutout_prob = trial.suggest_float("cutout_prob", 0, 1.0, step=0.1)
    mixup_alpha = trial.suggest_float("mixup_alpha", 0, 0.5, step=0.1)
    label_smoothing = trial.suggest_uniform("label_smoothing", 0, 0.2)
    base_lr = trial.suggest_float("base_lr", 0.01, 0.2, step=0.01)
    weight_decay = trial.suggest_loguniform("weight_decay", 1e-5, 1e-3)
    ema = trial.suggest_categorical("ema", ["true", "false"])
    ema_decay = trial.suggest_loguniform("ema_decay", 0.995,
                                         0.9999) if ema == 'true' else None

    @curry
    def transform(image, label, training):

        if training:
            image = random_crop(image, (32, 32), (4, 4))
            image = tf.image.random_flip_left_right(image)
            image = autoaugment(image, "CIFAR10")

        image, label = to_tensor(image, label)
        image = normalize(image, [0.491, 0.482, 0.447], [0.247, 0.243, 0.262])

        if training:
            image = random_apply(cutout(length=16), cutout_prob, image)

        label = tf.one_hot(label, 100)

        return image, label

    def zip_transform(data1, data2):
        return mixup(data1, data2, alpha=mixup_alpha)

    batch_size = 128
    eval_batch_size = 2048

    ds_train, ds_test, steps_per_epoch, test_steps = make_cifar100_dataset(
        batch_size, eval_batch_size, transform, zip_transform)

    setup_runtime(fp16=True)
    ds_train, ds_test = distribute_datasets(ds_train, ds_test)

    model = ResNet(depth=16, k=8, num_classes=100)
    model.build((None, 32, 32, 3))
    model.summary()

    criterion = CrossEntropy(label_smoothing=label_smoothing)

    epochs = 50
    lr_schedule = CosineLR(base_lr, steps_per_epoch, epochs=epochs, min_lr=0)
    optimizer = SGD(lr_schedule,
                    momentum=0.9,
                    weight_decay=weight_decay,
                    nesterov=True)
    train_metrics = {
        'loss': Mean(),
        'acc': CategoricalAccuracy(),
    }
    eval_metrics = {
        'loss': CategoricalCrossentropy(from_logits=True),
        'acc': CategoricalAccuracy(),
    }

    learner = SuperLearner(model,
                           criterion,
                           optimizer,
                           train_metrics=train_metrics,
                           eval_metrics=eval_metrics,
                           work_dir=f"./CIFAR100-NNI",
                           multiple_steps=True)

    callbacks = [OptunaReportIntermediateResult('acc', trial)]
    if ema == 'true':
        callbacks.append(EMA(ema_decay))

    learner.fit(ds_train,
                epochs,
                ds_test,
                val_freq=1,
                steps_per_epoch=steps_per_epoch,
                val_steps=test_steps,
                callbacks=callbacks)

    return learner.metric_history.get_metric('acc', "eval")[-1]