def compute_metric(current_dir, rampup_value, metric, metric_name): array = numpy.array(metric) mean_group = numpy.mean(metric) deviance_percentage = compute_deviance_percentage(metric) deviance = numpy.std(array) utils.write_gnuplot_file(current_dir + "/%s-mean.plot" % metric_name, rampup_value, mean_group) utils.write_gnuplot_file( current_dir + "/%s-deviance_percentage.plot" % metric_name, rampup_value, deviance_percentage ) utils.write_gnuplot_file(current_dir + "/%s-deviance.plot" % metric_name, rampup_value, deviance)
def compute_metric(current_dir, rampup_value, metric, metric_name): array = numpy.array(metric) mean_group = numpy.mean(metric) deviance_percentage = compute_deviance_percentage(metric) deviance = numpy.std(array) utils.write_gnuplot_file(current_dir + "/%s-mean.plot" % metric_name, rampup_value, mean_group) utils.write_gnuplot_file( current_dir + "/%s-deviance_percentage.plot" % metric_name, rampup_value, deviance_percentage) utils.write_gnuplot_file(current_dir + "/%s-deviance.plot" % metric_name, rampup_value, deviance)
def print_perf(tolerance_min, tolerance_max, item, df, mode, title, consistent=None, curious=None, unstable=None, sub_graph="", rampup_value=0, current_dir=""): # Tolerance_min represents the min where variance # shall be considered (in %) # Tolerance_max represents the maximum that variance # represent regarding the average (in %) variance_group = item.std() mean_group = item.mean() sum_group = item.sum() min_group = mean_group - 2 * variance_group max_group = mean_group + 2 * variance_group utils.do_print(mode, utils.Levels.INFO, "%-12s : Group performance : min=%8.2f, mean=%8.2f, " "max=%8.2f, stddev=%8.2f", title, item.min(), mean_group, item.max(), variance_group) variance_tolerance = compute_deviance_percentage(title, df.transpose()) if (rampup_value > 0) and (current_dir): utils.write_gnuplot_file(current_dir + "/deviance.plot", rampup_value, variance_group) utils.write_gnuplot_file(current_dir + "/deviance_percentage.plot", rampup_value, variance_tolerance) utils.write_gnuplot_file(current_dir + "/mean%s.plot" % sub_graph, rampup_value, mean_group) utils.write_gnuplot_file(current_dir + "/sum%s.plot" % sub_graph, rampup_value, sum_group) if variance_tolerance > tolerance_max: utils.do_print(mode, utils.Levels.ERROR, "%-12s : Group's variance is too important : %7.2f%% " "of %7.2f whereas limit is set to %3.2f%%", title, variance_tolerance, mean_group, tolerance_max) utils.do_print(mode, utils.Levels.ERROR, "%-12s : Group performance : UNSTABLE", title) for host in df.columns: if host not in curious: unstable.append(host) else: curious_performance = False for host in df.columns: if (("loops_per_sec") in mode) or ("bogomips" in mode): mean_host = df[host][title].mean() else: mean_host = df[host].mean() # If the variance is very low, don't try to find the black sheep if variance_tolerance > tolerance_min: if mean_host > max_group: curious_performance = True utils.do_print( mode, utils.Levels.WARNING, "%-12s : %s : Curious overperformance %7.2f : " "min_allow_group = %.2f, mean_group = %.2f " "max_allow_group = %.2f", title, host, mean_host, min_group, mean_group, max_group) if host not in curious: curious.append(host) if host in consistent: consistent.remove(host) elif mean_host < min_group: curious_performance = True utils.do_print( mode, utils.Levels.WARNING, "%-12s : %s : Curious underperformance %7.2f : " "min_allow_group = %.2f, mean_group = %.2f " "max_allow_group = %.2f", title, host, mean_host, min_group, mean_group, max_group) if host not in curious: curious.append(host) if host in consistent: consistent.remove(host) else: if (host not in consistent) and (host not in curious): consistent.append(host) else: if (host not in consistent) and (host not in curious): consistent.append(host) unit = " " if "Effi." in title: unit = "%" if curious_performance is False: utils.do_print( mode, utils.Levels.INFO, "%-12s : Group performance = %7.2f %s : CONSISTENT", title, mean_group, unit) else: utils.do_print(mode, utils.Levels.WARNING, "%-12s : Group performance = %7.2f %s : SUSPICIOUS", title, mean_group, unit)
def print_perf(tolerance_min, tolerance_max, item, df, mode, title, consistent=None, curious=None, unstable=None, sub_graph="", rampup_value=0, current_dir=""): # Tolerance_min represents the min where variance # shall be considered (in %) # Tolerance_max represents the maximum that variance # represent regarding the average (in %) variance_group = item.std() mean_group = item.mean() sum_group = item.sum() min_group = mean_group - 2 * variance_group max_group = mean_group + 2 * variance_group utils.do_print(mode, utils.Levels.INFO, "%-12s : Group performance : min=%8.2f, mean=%8.2f, " "max=%8.2f, stddev=%8.2f", title, item.min(), mean_group, item.max(), variance_group) variance_tolerance = compute_deviance_percentage(title, df.transpose()) if (rampup_value > 0) and (current_dir): utils.write_gnuplot_file(current_dir + "/deviance.plot", rampup_value, variance_group) utils.write_gnuplot_file(current_dir + "/deviance_percentage.plot", rampup_value, variance_tolerance) utils.write_gnuplot_file(current_dir + "/mean%s.plot"% sub_graph, rampup_value, mean_group) utils.write_gnuplot_file(current_dir + "/sum%s.plot" % sub_graph, rampup_value, sum_group) if variance_tolerance > tolerance_max: utils.do_print(mode, utils.Levels.ERROR, "%-12s : Group's variance is too important : %7.2f%% " "of %7.2f whereas limit is set to %3.2f%%", title, variance_tolerance, mean_group, tolerance_max) utils.do_print(mode, utils.Levels.ERROR, "%-12s : Group performance : UNSTABLE", title) for host in df.columns: if host not in curious: unstable.append(host) else: curious_performance = False for host in df.columns: if (("loops_per_sec") in mode) or ("bogomips" in mode): mean_host = df[host][title].mean() else: mean_host = df[host].mean() # If the variance is very low, don't try to find the black sheep if variance_tolerance > tolerance_min: if mean_host > max_group: curious_performance = True utils.do_print( mode, utils.Levels.WARNING, "%-12s : %s : Curious overperformance %7.2f : " "min_allow_group = %.2f, mean_group = %.2f " "max_allow_group = %.2f", title, host, mean_host, min_group, mean_group, max_group) if host not in curious: curious.append(host) if host in consistent: consistent.remove(host) elif mean_host < min_group: curious_performance = True utils.do_print( mode, utils.Levels.WARNING, "%-12s : %s : Curious underperformance %7.2f : " "min_allow_group = %.2f, mean_group = %.2f " "max_allow_group = %.2f", title, host, mean_host, min_group, mean_group, max_group) if host not in curious: curious.append(host) if host in consistent: consistent.remove(host) else: if (host not in consistent) and (host not in curious): consistent.append(host) else: if (host not in consistent) and (host not in curious): consistent.append(host) unit = " " if "Effi." in title: unit = "%" if curious_performance is False: utils.do_print( mode, utils.Levels.INFO, "%-12s : Group performance = %7.2f %s : CONSISTENT", title, mean_group, unit) else: utils.do_print(mode, utils.Levels.WARNING, "%-12s : Group performance = %7.2f %s : SUSPICIOUS", title, mean_group, unit)