""" Test VGG19 Layers """ import sys sys.path.insert(0, '../../python/planner') import planner as pln import hardware as hw import nn import torch import time hw_spec = hw.HardwareSpec(0.2, 0.8, 0.0008, 0.005, 0.64) data_1_1 = torch.randn(1, 3, 224, 224) conv_1_1 = nn.Conv2d(3, 64, 3, padding=1) data_1_2 = torch.randn(1, 64, 224, 224) conv_1_2 = nn.Conv2d(64, 64, 3, padding=1) data_2_1 = torch.randn(1, 64, 112, 112) conv_2_1 = nn.Conv2d(64, 128, 3, padding=1) data_2_2 = torch.randn(1, 128, 112, 112) conv_2_2 = nn.Conv2d(128, 128, 3, padding=1) data_3_1 = torch.randn(1, 128, 56, 56) conv_3_1 = nn.Conv2d(128, 256, 3, padding=1)
""" import sys sys.path.insert(0, '../../python/planner') import planner as pln import hardware as hw import nn import torch import time simd_cfg_path = '../../hwcfg/simd.json' hw_spec = hw.HardwareSpec(simd_cfg_path) data_1 = torch.randn(1, 3, 224, 224) conv_1 = nn.Conv2d(3, 96, 7, padding=2) data_2_1 = torch.randn(1, 96, 55, 55) conv_2_1 = nn.Conv2d(96, 16, 1, padding=0) data_2_2 = torch.randn(1, 16, 55, 55) conv_2_2 = nn.Conv2d(16, 64, 1, padding=0) conv_2_3 = nn.Conv2d(16, 64, 3, padding=1) data_3_1 = torch.randn(1, 128, 55, 55) conv_3_1 = nn.Conv2d(128, 16, 1, padding=0) data_3_2 = torch.randn(1, 32, 55, 55)
import sys sys.path.insert(0, '../../python') import planner as pln import hardware as hw import dataset import models import torch.nn import torch import time x86_cfg_path = '../../hwcfg/x86.json' hw_spec = hw.HardwareSpec(x86_cfg_path) data = dataset.darknet() darknet19 = models.darknet19() pnn = pln.Planner() start_time = time.time() for name, module in darknet19.named_modules(): if isinstance(module, torch.nn.Sequential): continue pnn.set_data(data=data, module=module, hw_spec=hw_spec, layer_name=name) data = pnn.run('../../build') elapsed_time = time.time() - start_time