示例#1
0
def cof():
    im1 = np.array(Image.open(inpfilename).convert('L'))
    im2 = np.array(Image.open(inpfilename).convert('L'))
    wid = 5
    harrisim = harris.compute_harris_response(im1,5)
    filtered_coords1 = harris.get_harris_points(harrisim, wid+1)
    d1 = harris.get_descriptors(im1, filtered_coords1,wid)
    
    harrisim = harris.compute_harris_response(im2,5)
    filtered_coords2 = harris.get_harris_points(harrisim, wid+1)
    d2 = harris.get_descriptors(im2, filtered_coords2,wid)
    
    print 'starting matching'
    matches = harris.match_twosided(d1,d2)
    print "matches", matches
    
    figure()
    gray()
    harris.plot_matches(im1, im2, filtered_coords1, filtered_coords2, matches)
    print "show the image"
    show()
示例#2
0
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 15 11:19:46 2016

@author: user
"""
from PIL import Image
from pylab import *
import harris

im = array(Image.open('../ch1/baby_16.jpg').convert('L'))
harrisim = harris.compute_harris_response(im)
filtered_coords = harris.get_harris_points(harrisim, 6)
harris.plot_harris_points(im, filtered_coords)
imshow(im)
wid = 5
im1 = array(Image.open('../ch1/baby_1.jpg').convert('L'))
harrisim = harris.compute_harris_response(im1, 5)
filtered_coords1 = harris.get_harris_points(harrisim, wid + 1)
d1 = harris.get_descriptors(im1, filtered_coords1, wid)
im2 = array(Image.open('../ch1/baby_16.jpg').convert('L'))
harrisim = harris.compute_harris_response(im2, 5)
filtered_coords2 = harris.get_harris_points(harrisim, wid + 1)
d2 = harris.get_descriptors(im2, filtered_coords2, wid)
print 'starting matching'
matches = harris.match_twosided(d1, d2)
figure()
gray()
harris.plot_matches(im1, im2, filtered_coords1, filtered_coords2, matches)
show()
示例#3
0
文件: sift.py 项目: zachmullen/cv
    print 'matching one way'
    matches_12 = match_features(desc1, desc2)
    print 'matching other way'
    matches_21 = match_features(desc2, desc1)

    print 'culling matches'
    idx_12 = matches_12.nonzero()[0]

    for i in idx_12:
        if matches_21[int(matches_12[i])] != i:
            matches_12[i] = 0

    return matches_12


if __name__ == '__main__':
    im1, im2 = [
        process_image('data/crans_%d_small.jpg' % i, 'output/im%d.sift' % i)
        for i in (1, 2)
    ]
    l1, d1 = read_features_from_file('output/im1.sift')
    l2, d2 = read_features_from_file('output/im2.sift')

    matches = match_features(d1, d2)
    print matches[:50]

    pylab.figure()
    pylab.gray()
    harris.plot_matches(im1, im2, l1[:, :2], l2[:, :2], matches)
    pylab.show()
示例#4
0
t = time.time()

filtered_coords1 = harris.get_harris_points(harrisim, wid + 1)

print "t for get_harris_points=", time.time() - t
t = time.time()

d1 = harris.get_descriptors(im1, filtered_coords1, wid)

print "t for get_descriptors=", time.time() - t
t = time.time()

harrisim = harris.compute_harris_response(im2, 5)
filtered_coords2 = harris.get_harris_points(harrisim, wid + 1)
d2 = harris.get_descriptors(im2, filtered_coords2, wid)

print "starting matching"
matches = harris.match_twosided(d1, d2)

figure()
gray()
harris.plot_matches(im1, im2, filtered_coords1, filtered_coords2, matches)
show()

"""
im = array(Image.open('empire.jpg').convert('L'))
harrisim = harris.compute_harris_response(im)
filtered_coords = harris.get_harris_points(harrisim,6)
harris.plot_harris_points(im, filtered_coords)
"""
示例#5
0
im1 = array(Image.open(imname1).convert('L'))
sift.process_image(imname1,'ti1.sift')

l1,d1 = sift.read_features_file('./ti1.sift')

im2 = array(Image.open(imname2).convert('L'))
sift.process_image(imname2,'ti2.sift')

l2,d2 = sift.read_features_file('./ti2.sift')

locs1 = l1[:,:2]
locs2 = l2[:,:2]

matchscore = sift.match_twoside(d1,d2)
print(locs1.shape)
print(locs2.shape)
print(matchscore.shape)
print(matchscore.max())
print(locs1[24,1])

#figure()
#sift.plot_feature(im1,l1,circle = True)

#show()
figure()
harris.plot_matches(im1,im2,locs1,locs2,matchscore)
show()


示例#6
0
		print "Running Harris Corner detection for", image1, "and", image2
		print "For the following number of iterations:", num_runs

	else:
		print 'No image specified'
		print 'Run as follows: serial_mapping.py <image1.png> <image2.jpg>\n'

	# Run Harris Get Corners for Image 1
	Harris_Matrix_1, serial_points_1, parallel_points_1, output_times_openCL_1, \
		output_times_serial_1 = harris_get_corners(num_runs, image1)

	# Run Harris Get Corners for Image 1
	Harris_Matrix_2, serial_points_2, parallel_points_2, output_times_openCL_2, \
		output_times_serial_2  = harris_get_corners(num_runs, image2)			

	# Run Parallel Matching and Sort with Parallel Harris corners
	match_parallel = parallel_match_sort(Harris_Matrix_1, Harris_Matrix_2, \
		parallel_points_1, parallel_points_2)

	# Run Parallel Matching and Sort with Parallel Harris corners
	match_serial = serial_matching(Harris_Matrix_1, Harris_Matrix_2, \
		serial_points_1, serial_points_2)

	# Plot Parallel Matches
	plot_matches(image1, image2, parallel_points_1, parallel_points_2, \
		match_parallel, 'parallel_match.jpg')

	# Plot Serial Matches
	plot_matches(image1, image2, serial_points_1, serial_points_2, \
		match_serial, 'serial_match.jpg')
示例#7
0
from pylab import *
import harris
#import imtools

im1 = array(Image.open('/Users/taronegeorage/Desktop/111.jpg').convert('L'))
im2 = array(Image.open('/Users/taronegeorage/Desktop/111.jpg').convert('L'))

harrisim1 = harris.compute_harris_response(im1)
filtered_coords1 = harris.get_harris_points(harrisim1)
patches1 = harris.get_descriptors(im1, filtered_coords1)

harris.plot_harris_points(im1, filtered_coords1)

harrisim2 = harris.compute_harris_response(im2)
filtered_coords2 = harris.get_harris_points(harrisim2)
patches2 = harris.get_descriptors(im2, filtered_coords2)

harris.plot_harris_points(im2, filtered_coords2)

matches = harris.match_twosided(patches1, patches2)

figure()
gray()
harris.plot_matches(im1,
                    im2,
                    filtered_coords1,
                    filtered_coords2,
                    matches,
                    show_below=False)
show()
from PIL import Image
from pylab import *
import harris
import imtools

im1 = array(Image.open('/Users/thakis/src/PCV/data/sf_view1.jpg').convert('L'))
im2 = array(Image.open('/Users/thakis/src/PCV/data/sf_view2.jpg').convert('L'))

harrisim1 = harris.compute_harris_response(im1)
filtered_coords1 = harris.get_harris_points(harrisim1)
patches1 = harris.get_descriptors(im1, filtered_coords1)

harris.plot_harris_points(im1, filtered_coords1)


harrisim2 = harris.compute_harris_response(im2)
filtered_coords2 = harris.get_harris_points(harrisim2)
patches2 = harris.get_descriptors(im2, filtered_coords2)

harris.plot_harris_points(im2, filtered_coords2)


matches = harris.match_twosided(patches1, patches2)

figure()
gray()
harris.plot_matches(im1, im2,
                    filtered_coords1, filtered_coords2,
                    matches, show_below=False)
show()
示例#9
0
文件: sift.py 项目: zachmullen/cv
def match_twosided(desc1, desc2):
    print 'matching one way'
    matches_12 = match_features(desc1, desc2)
    print 'matching other way'
    matches_21 = match_features(desc2, desc1)

    print 'culling matches'
    idx_12 = matches_12.nonzero()[0]

    for i in idx_12:
        if matches_21[int(matches_12[i])] != i:
            matches_12[i] = 0

    return matches_12

if __name__ == '__main__':
    im1, im2 = [
        process_image('data/crans_%d_small.jpg' % i, 'output/im%d.sift' % i)
        for i in (1, 2)
    ]
    l1, d1 = read_features_from_file('output/im1.sift')
    l2, d2 = read_features_from_file('output/im2.sift')

    matches = match_features(d1, d2)
    print matches[:50]

    pylab.figure()
    pylab.gray()
    harris.plot_matches(im1, im2, l1[:,:2], l2[:,:2], matches)
    pylab.show()
示例#10
0
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

from harris import compute_harris_response, get_harris_points, \
    get_descriptors, match_two_sided, plot_matches, match

img1 = np.array(Image.open('images/house.jpg').convert('L'))
img2 = np.array(Image.open('images/house2.jpg').convert('L'))
wid = 100

harris_img = compute_harris_response(img1, 5)
filtered_coords1 = get_harris_points(harris_img, wid + 1)
d1 = get_descriptors(img1, filtered_coords1, wid)

harris_img = compute_harris_response(img2, 5)
filtered_coords2 = get_harris_points(harris_img, wid + 1)
d2 = get_descriptors(img2, filtered_coords2, wid)

print('[INFO] Starting Matching ')
matches = match(d1, d2)
print('[INFO] match complete')

plt.figure()
plt.gray()
plot_matches(img1, img2, filtered_coords1, filtered_coords2, matches)
plt.show()