示例#1
0
def getFramesFromVid():
    os.chdir(actual_path)
    os.chdir('test')
    os.chdir('hsl')
    os.chdir('test4')

    print 'Iam: ', os.getcwd()

    # s'hauria d'executar la comanda ADD per passar els arrays vh264 (el video) a .mp4
    # os.execute()
    files = os.listdir(os.getcwd())
    print files
    print '\n'

    for file in files:
        namefile, extension = os.path.splitext(file)
        if (extension == '.mp4' or extension == '.MP4') and namefile == 'test':

            print 'filename: ', namefile
            # per grabar els frames del video vhs264 a fotos:
            count = 0
            vidcap = cv2.VideoCapture(file)

            success, image = vidcap.read()

            #hsv_img = rgb2hsv(image)
            #hsv_img = hsv_img[:,:,:] * 255
            # hue, saturation, lightness or luminance (color/to, saturació, brillantor)
            hsl_img = hasel.rgb2hsl(image)
            hsl_img = hsl_img[:, :, :] * 255

            while success:
                #hsv_img = rgb2hsv(image)
                #hsv_img = hsv_img[:,:,:]  * 255
                # hue, saturation, lightness or luminance (color/to, saturació, brillantor)
                hsl_img = hasel.rgb2hsl(image)
                hsl_img = hsl_img[:, :, :] * 255
                # cmyk
                #cmyk_img = phim.rgb2cmyk(np.asarray(img))
                # ycbcr
                #ycbcr_img = rgb2ycbcr(img)

                cv2.imwrite("%d00HSL.jpg" % count, hsl_img[:, :, :])

                cv2.imwrite("%d00HSL2.jpg" % count, hsl_img[:, :, 2])

                #cv2.imwrite("%d-rgb.jpg" % count,image[:,:,:])

                #cv2.imwrite("hsllll1-%d.jpg" % count,hsl_img[:,:,1])
                #cv2.imwrite("hsllll0-%d.jpg" % count,hsl_img[:,:,0])

                #cv2.imwrite("estatic-frame-hsl%d.jpg" % count, hsl_img)     # save frame as JPEG file
                #cv2.imwrite("estatic-frame-hsv%d.jpg" % count, hsv_img)     # save frame as JPEG file

                success, image = vidcap.read()

                count += 1

            print 'Count: ', count
示例#2
0
    def run_threaded(self):
        # if threaded = True
        # this function is run instead of run

        # You can modify the image frame like any other np array
        #out = self.frame[:][200:600]

        # Test with local photo
        out = Image.open("./mlep.jpg")
        out = np.array(out)

        # Extract reds
        # out_R = out[:,:,0]
        # return out_R

        # convert to HSL
        # out = self.rgb_to_hsv(out)

        # using hasel
        out = hasel.rgb2hsl(out)

        # Using opencv
        #out = cv2.cvtColor(out, cv2.COLOR_RGB2HLS)

        thresh = (0., 1)

        channel = out[:, :, 1]

        binary_output = np.zeros_like(channel)
        binary_output[(channel > thresh[0]) & (channel <= thresh[1])] = 1

        return binary_output
示例#3
0
def get_pixels_for_image(img_file_path):
    print("reading image...")
    img_rgb = io.imread(img_file_path)

    print("converting color space...")
    img_hsl = hasel.rgb2hsl(img_rgb)
    hsl_colors = img_hsl.reshape((-1, 3))

    print(
        "filtering out darkest colors before clustering for better results...")
    samples_before = hsl_colors.shape[0]
    hsl_colors = hsl_colors[hsl_colors[:, 2] > v_threshold]
    samples_after = hsl_colors.shape[0]

    print("filtered out " +
          str(100 - (100 * samples_after) // samples_before) + "% of pixels")
    return hsl_colors
示例#4
0
def get_pixels_for_image(img_file_path):
    log("reading image \"" + img_file_path + "\"")
    img_rgb = io.imread(img_file_path)

    log("converting color space...")

    if (len(img_rgb.shape) < 3):  # this is a greyscale image
        w, h = img_rgb.shape
        ret = np.empty((w, h, 3), dtype=np.uint8)
        ret[:, :, 0] = img_rgb
        ret[:, :, 1] = img_rgb
        ret[:, :, 2] = img_rgb
        img_rgb = ret

    img_hsl = hasel.rgb2hsl(img_rgb[:, :, 0:3])
    hsl_colors = img_hsl.reshape((-1, 3))

    return hsl_colors
示例#5
0
    def _shootWater(self, op='hsl'):
        PIN = 27
        GPIO.setmode(GPIO.BCM)
        GPIO.setup(PIN, GPIO.OUT)
        GPIO.output(PIN, 1)
        rawCapture = PiRGBArray(self.picamera)
        self.picamera.framerate = 10
        for image in self.picamera.capture_continuous(rawCapture,
                                                      format="bgr"):

            if self.extinct:
                print('fuego extinguido')
                break
            cv2.imwrite('fuego.jpg', image.array)
            image.truncate(0)
            np_arr_rgb = cv2.imread('fuego.jpg', 1)
            photo = hasel.rgb2hsl(np_arr_rgb)
            photo[:, :, :] = photo[:, :, :] * 255
            black = np.uint8(photo[:, :, 2])
            nums, num_counter = np.unique(black[:, :], return_counts=True)
            freq_dic = dict(zip(nums, num_counter))
            try:
                if freq_dic[255] > (
                        self.recognizer_size_y *
                        self.recognizer_size_x) * self.white_tolerance:
                    print('Sigue habiendo fuego')
                    self.extinct = False
                else:
                    print('No hay fuego ya')
                    GPIO.output(PIN, 0)
                    GPIO.cleanup()
                    self.extinct = True
            except KeyError:
                print 'no veog foc'
                self.extinct = True
        GPIO.output(PIN, 0)
        GPIO.cleanup()
示例#6
0
        h, s, d = tf.split(hsd_img, 3, axis=-1)

        gamma = self.e_step(d)
        return gamma

    def eval(self, rgb_img, hsd_img):
        """ Perform a step needed for inference """

        if isinstance(hsd_img, np.ndarray):
            hsd_img = tf.convert_to_tensor(hsd_img, dtype=tf.float32)

        h, s, d = tf.split(hsd_img, 3, axis=-1)

        gamma = self.e_step(d)
        _, mu, std = self.m_step(hsd_img, gamma)

        return mu, std, gamma


if __name__ == '__main__':
    import hasel
    import imageio

    dcgmm = DCGMM()

    rgb_img = imageio.imread('images/0', pilmode='RGB')
    hsd_img = hasel.rgb2hsl(rgb_img)[None, :, :, :]

    h, s, d = dcgmm(rgb_img, hsd_img)
示例#7
0
    def run(self, ini_x, ini_y, fi_x, fi_y, zone, cxx, cyy):
        #self.picamera.resolution = (640,480)

        rawCapture = PiRGBArray(self.picamera)
        #self.picamera.start_preview()
        #self.picamera.framerate = 3

        num_frames = 2

        i = 0
        positives_warm = 0
        negatives_warm = 0
        positives = 0
        negatives = 0
        #for i in range(num_frames):

        for image in self.picamera.capture_continuous(rawCapture,
                                                      format="bgr"):
            #print ('ZONA:'+str(zone)+'frame :'+str(i)+' | thread '+str(zone))

            if i == num_frames:
                self.isFire = True
                break

            #self.mutex.acquire()
            #self.picamera.capture('tmp'+str(zone)+str(i)+'.jpg','jpeg')
            #self.mutex.release()

            cv2.imwrite('tmp' + str(zone) + str(i) + '.jpg', image.array)
            image.truncate(0)

            np_arr_rgb = cv2.imread('tmp' + str(zone) + str(i) + '.jpg', 1)

            photo = hasel.rgb2hsl(np_arr_rgb)
            photo[:, :, :] = photo[:, :, :] * 255
            black = np.uint8(photo[:, :, 2])

            warm_results = []
            max_num_colors = fi_y * fi_x
            num = 0
            cX = 0
            cY = 0
            segment = black[ini_x:fi_x, ini_y:fi_y]
            #cv2.imwrite('zona'+str(zone)+'-frame'+str(i)+'.jpg',segment)

            M = cv2.moments(segment)

            try:
                cY = int(M["m10"] / M["m00"])
                cX = int(M["m01"] / M["m00"])
                #print 'Anteriors: ',cxx,cyy,' actuals: ',cX,cY
                #print 'Diferencia | x: ',abs(cX-cxx),' y: ',abs(cY-cyy)

                if (abs(cX - cxx) > int(fi_x - ini_x) * self.motion_tolerance):
                    positives += 1
                else:
                    negatives += 1

                if (abs(cY - cyy) > int(fi_y - ini_y) * self.motion_tolerance):

                    positives += 1
                else:

                    negatives += 1

                w_result = self.warmColorDetection(np_arr_rgb, ini_x, ini_y,
                                                   fi_x, fi_y, zone)
                if w_result:
                    positives_warm += 1
                else:
                    negatives_warm += 1

            except ZeroDivisionError:
                print('isFire  -> ZeroDivisionError analitzant la zona: ',
                      zone)

            i += 1

        try:
            self.results[zone] = [
                'Zona: ' + str(zone), [positives, negatives],
                [positives_warm, negatives_warm], ini_x, ini_y, fi_x, fi_y
            ]

        except ZeroDivisionError:
            print('ZeroDivisionError: ', positives, negatives, positives,
                  negatives_warm)
示例#8
0
    def identifyWhiteZones(self):
        self.picamera.resolution = (640, 480)
        rawCapture = PiRGBArray(self.picamera)
        self.picamera.start_preview()
        self.picamera.framerate = 20

        # self move motors, detect limits, go in quadratic zone.

        for image in self.picamera.capture_continuous(rawCapture,
                                                      format="bgr"):
            print('new frame')
            # Aquesta variable s'actualitza un cop sha detectat zones blanques i s'analitzen en el motion i color.

            cv2.imwrite('FRAME_ORIGEN.jpg', image.array)
            image.truncate(0)

            np_arr_rgb = cv2.imread('FRAME_ORIGEN.jpg', 1)
            photo = hasel.rgb2hsl(np.uint8(np_arr_rgb))
            photo[:, :, :] = np.uint8(photo[:, :, :]) * 255
            black = np.uint8(photo[:, :, 2])

            R = G = B = 255
            size_x = 0
            size_y = 0
            segment = None
            ini_x = 9999999
            ini_y = 9999999
            fi_x = 0
            fi_y = 0
            cX = 0
            cY = 0
            max_width = photo.shape[1]
            max_height = photo.shape[0]
            max_num_colors = 0
            num_colors = 0
            start = time.time()
            last_is_white = False
            possiblyFire = False
            num_white_zones = 0
            whites_pos_list = []

            # Analyse frame by segments, getting only white zones
            for x in range(int(max_height / self.recognizer_size_x) + 1):
                for y in range(int(max_width / self.recognizer_size_y) + 1):
                    try:
                        if black[x * self.recognizer_size_x:
                                 (x * self.recognizer_size_x) +
                                 self.recognizer_size_x,
                                 y * self.recognizer_size_y:
                                 (y * self.recognizer_size_y) +
                                 self.recognizer_size_y].shape != (max_height,
                                                                   max_width):
                            segment = np.zeros(
                                (photo[x * self.recognizer_size_x:
                                       (x * self.recognizer_size_x) +
                                       self.recognizer_size_x,
                                       y * self.recognizer_size_y:
                                       (y * self.recognizer_size_y) +
                                       self.recognizer_size_y].shape[0],
                                 photo[x * self.recognizer_size_x:
                                       (x * self.recognizer_size_x) +
                                       self.recognizer_size_x,
                                       y * self.recognizer_size_y:
                                       (y * self.recognizer_size_y) +
                                       self.recognizer_size_y].shape[1]),
                                dtype=np.uint8)
                        else:
                            segment = np.zeros((self.recognizer_size_x,
                                                self.recognizer_size_y),
                                               dtype=np.uint8)

                        segment[:, :] = black[x * self.recognizer_size_x:
                                              (x * self.recognizer_size_x) +
                                              self.recognizer_size_x,
                                              y * self.recognizer_size_y:
                                              (y * self.recognizer_size_y) +
                                              self.recognizer_size_y]
                        size_x = segment.shape[0]
                        size_y = segment.shape[1]

                    except ValueError as e:
                        raise e

                    nums = None
                    num_counter = None
                    freq_dic = None
                    nums, num_counter = np.unique(segment[:, :],
                                                  return_counts=True)
                    freq_dic = dict(zip(nums, num_counter))

                    try:
                        if freq_dic[255]:
                            if freq_dic[255] >= (
                                (size_y * size_x) * self.white_tolerance):

                                possiblyFire = True
                                if last_is_white:
                                    fi_x = (x * size_x) + size_x
                                    fi_y = (y * size_y) + size_y
                                else:
                                    if ini_x > (x * size_x):
                                        ini_x = x * self.recognizer_size_x
                                    if ini_y > (y * size_y):
                                        ini_y = y * self.recognizer_size_y
                                    whites_pos_list.append([ini_x, ini_y])
                                    fi_x = (x *
                                            self.recognizer_size_x) + size_x
                                    fi_y = (y *
                                            self.recognizer_size_y) + size_y

                                last_is_white = True
                            else:
                                pass
                    except KeyError:
                        if last_is_white:
                            whites_pos_list[-1].append(fi_x)
                            whites_pos_list[-1].append(fi_y)
                            whites_pos_list[-1].append(num_colors)
                            num_colors = 0
                            num_white_zones += 1
                            ini_x = 999999
                            ini_y = 999999
                            fi_y = 0
                            fi_x = 0
                            last_is_white = False
                        else:
                            ini_x = 999999
                            ini_y = 999999
                            fi_y = 0
                            fi_x = 0

            if possiblyFire:

                print('Hi ha: ', num_white_zones, ' objectes blancs')

                threads = []
                res = [None] * (num_white_zones + 1)
                self.results = [None for i in range(num_white_zones)]

                # Versio on primer executem la xarxa neuronal per sobre i despres la deteccio de foc LMC en temps real:
                ##############################################################################################
                #self.neural_net_th = Thread(target = self._executeNeuralNetwork, args =(self,np_arr_rgb))
                #self.neural_net_th.start()

                # el join del neural net, el fem dins del lmc, aixo vol dir que executem paralelament la network i el lmc.

                # Executem el LMC per detectar si es foc o no en temps real
                #print 'Whites: ',whites_pos_list
                #whites_pos_list = self._getBetterZones(whites_pos_list)
                #num_new_zones = len(whites_pos_list)
                #print whites_pos_list
                #num_items_position = num_new_zones
                #print 'Better: ',whites_pos_list
                self.num_white_zones = num_white_zones

                for zone in range(num_white_zones):
                    try:
                        ini_x = whites_pos_list[zone][0]
                        ini_y = whites_pos_list[zone][1]
                        fi_x = whites_pos_list[zone][2]
                        fi_y = whites_pos_list[zone][3]

                        segment = np.uint8(black[ini_x:fi_x, ini_y:fi_y])

                        M = cv2.moments(segment)

                        try:
                            cY = int(M["m10"] / M["m00"])
                            cX = int(M["m01"] / M["m00"])
                            if cY > ((self.recognizer_size_y / 2) +
                                     (self.recognizer_size_y * 0.20)):
                                ini_y += int(self.recognizer_size_y * 0.25)
                            if cY < ((self.recognizer_size_y / 2) +
                                     (self.recognizer_size_y * 0.20)):
                                fi_y -= int(self.recognizer_size_y * 0.25)
                            if cX < ((self.recognizer_size_x / 2) +
                                     (self.recognizer_size_x * 0.20)):
                                fi_x -= int(self.recognizer_size_y * 0.25)
                            if cX > ((self.recognizer_size_y / 2) +
                                     (self.recognizer_size_y * 0.20)):
                                ini_x += int(self.recognizer_size_y * 0.25)

                        except ZeroDivisionError:
                            print(
                                'IdentifyWhites: ZeroDivisionError analitzant la zona ',
                                zone)

                        if cX == 0 or cY == 0:
                            print(
                                'El centroide surt 0,0 per tant no analitzem aquesta zona. Deu ser redundant'
                            )

                        else:
                            # ferho amb threads
                            #th = Thread(target = self.foo, args =())
                            #time.sleep(0.1)
                            self.run(ini_x, ini_y, fi_x, fi_y, zone, cX, cY)
                            #th = Thread(target = self.run, args =(ini_x,ini_y,fi_x,fi_y,num_colors,zone,cX,cY))
                            #threads.append(th)
                            #th.start()
                            #th.join()
                    except IndexError:
                        pass

                #for th in threads:
                #th.join()
            #self.neural_net_th.join()
            self._analyseResults()
            if self.extinct:
                print 'dwfoc extingit'
                cv2.destroyAllWindows()
                break
        #cv2.destroyAllWindows()

        #   print ('En este frame no hay fuego')
        # girar:
        # No excutem el moure's
            '''
    assert len(greyscale_file_paths) == len(colored_file_paths)

    for i, greyscale_file_path in enumerate(tqdm(greyscale_file_paths)):
        greyscale_image = Image.open(greyscale_file_path)
        greyscale_image_np = np.array(greyscale_image)

        colored_file_path = colored_file_paths[i]
        colored_image = Image.open(colored_file_path).resize(
            greyscale_image.size, resample=Image.LANCZOS
        )
        colored_image_np = np.array(colored_image)

        # Transfer hue and saturation from the color image to the greyscale image via the
        # selected color space
        if args.via_color_space == "hsl":
            greyscale_image_np_hsl = rgb2hsl(greyscale_image_np)
            colored_image_np_hsl = rgb2hsl(colored_image_np)

            greyscale_image_np_hsl[:, :, 0] = colored_image_np_hsl[:, :, 0]  # hue
            greyscale_image_np_hsl[:, :, 1] = colored_image_np_hsl[
                :, :, 1
            ]  # saturation

            full_res_colored_image = hsl2rgb(greyscale_image_np_hsl)
        else:
            greyscale_image_np_hsv = rgb2hsv(greyscale_image_np)
            colored_image_np_hsv = rgb2hsv(colored_image_np)

            greyscale_image_np_hsv[:, :, 0] = colored_image_np_hsv[:, :, 0]  # hue
            greyscale_image_np_hsv[:, :, 1] = colored_image_np_hsv[
                :, :, 1
示例#10
0
	def run(self,ini_x,ini_y,fi_x,fi_y,previous_num_whites,zone,cxx,cyy):
		#self.picamera.resolution = (640,480)

		rawCapture = PiRGBArray(self.picamera)
		
		self.picamera.start_preview()
		
		#self.picamera.framerate = 3
		
		tmp_res = []

		iterations = 0
	
		for image in self.picamera.capture_continuous(rawCapture, format="bgr"):
			
			if iterations == 2:
				print 'End motion thread zone: ',zone
				break

			cv2.imwrite('tmp_isF.jpg',image.array)
			np_arr_rgb = cv2.imread('tmp_isF.jpg')
			photo = hasel.rgb2hsl(np_arr_rgb)
			photo[:,:,:] = photo[:,:,:] * 255
			photo[:,:,:] = np.uint8(photo[:,:,:])
			black = photo[:,:,2]
			
			positives = 0
			negatives = 0
			frame = 0
			warm_results = []
			image.truncate(0)
			max_num_colors = fi_y*fi_x
			num = 0
			cX = 0
			cY = 0
			segment = black[ini_x:fi_x, ini_y:fi_y]
			
			'''freq = None
			nums, num_counter = np.unique(segment[:,:], return_counts=True)
			freq = dict(zip(nums, num_counter))
			try:
				num = freq[255]
				# Provar aquesta comparacio amb un or (abs(previous_num_whites - freq[255])) < previous_num_whites*q
				if ((abs(previous_num_whites - num)) > previous_num_whites*self.white_tolerance):
					positives += 1
				else:
					negatives += 1
			except KeyError:
				negatives += 1'''

			M = cv2.moments(segment)
			
			try:
				cY = int(M["m10"] / M["m00"])
				cX = int(M["m01"] / M["m00"])
				#print 'Anteriors: ',cxx,cyy,' actuals: ',cX,cY
				#print 'Diferencia | x: ',abs(cX-cxx),' y: ',abs(cY-cyy)

				if (abs(cX-cxx) > int(fi_x-ini_x) * self.white_tolerance) :
					#print 'es mou bastan a les x'
					positives += 1
				else:
					negatives += 1
					#print 'No es mou gaire a les x'

				if (abs(cY-cyy) > int(fi_y-ini_y) * self.white_tolerance):
					#print 'es mou bastan a les y'
					positives += 1
				else:
					#print 'No es mou gaire a les y'
					negatives += 1
			
			except ZeroDivisionError:
				print 'isFire  -> ZeroDivisionError analitzant la zona: ',zone

			tmp_res.append(['Zona: '+str(zone),positives,negatives])

			self.results_motion_detection[zone].append(['Zona: '+str(zone),positives,negatives])
		
			w_result = self.warmColorDetection(np_arr_rgb,ini_x,ini_y,fi_x,fi_y,previous_num_whites,zone)

			print 'En aquesta zona hi ha: Motion positius (',positives,')/(',negatives,') i el resultat d warm es: ',w_result


			iterations+=1
示例#11
0
	def identifyWhiteZones(self):
		self.picamera.resolution = (640,480)
		rawCapture = PiRGBArray(self.picamera)
		self.picamera.start_preview()
		self.picamera.framerate = 10
	
		# self move motors, detect limits, go in quadratic zone.
		
		for image in self.picamera.capture_continuous(rawCapture, format="bgr"):
		    
		    # Aquesta variable s'actualitza un cop sha detectat zones blanques i s'analitzen en el motion i color.
		    
		    if self.isFire:
		    	print 'Hay fuego'
		    	print self.results_color_detection
		    	print self.results_motion_detection
		    	break

		    image.truncate(0)
		    cv2.imwrite('tmp_id.jpg',image.array)

		    np_arr_rgb = cv2.imread('tmp_id.jpg',1)
		    photo = hasel.rgb2hsl(np_arr_rgb)
		    photo[:,:,:] = photo[:,:,:] * 255
		    photo[:,:,:] = np.uint8(photo[:,:,:])
		    black = photo[:,:,2]

		    #cv2.imshow('img',np.uint8(photo))
		    #cv2.waitKey(0)
		    #cv2.destroyAllWindows()
		  
		    R = G = B = 255 
		    size_x = 0
		    size_y = 0
		    segment = None
		    ini_x = 9999999
		    ini_y = 9999999
		    fi_x = 0
		    fi_y = 0
		    cX = 0
		    cY = 0                
		    max_width = photo.shape[1]
		    max_height = photo.shape[0]
		    max_num_colors = 0
		    num_colors = 0
		    start = time.time()
		    last_is_white = False
		    possiblyFire = False
		    num_white_zones = 0
		    whites_pos_list = []
		    
		    # Analyse frame by segments, getting only white zones 
		    for x in range(int(max_height/self.recognizer_size_x)+1):
		    	for y in range(int(max_width/self.recognizer_size_y)+1):
		    		try:
		    			if black[ x * self.recognizer_size_x : (x * self.recognizer_size_x) + self.recognizer_size_x, y * self.recognizer_size_y : (y * self.recognizer_size_y) + self.recognizer_size_y].shape != (max_height,max_width):
		    				segment = np.zeros((photo[ x * self.recognizer_size_x : (x * self.recognizer_size_x) + self.recognizer_size_x, y * self.recognizer_size_y : (y * self.recognizer_size_y) + self.recognizer_size_y].shape[0], photo[ x * self.recognizer_size_x : (x * self.recognizer_size_x) + self.recognizer_size_x, y * self.recognizer_size_y : (y * self.recognizer_size_y) + self.recognizer_size_y].shape[1]),dtype=np.uint8)	
		    			else:
		    				segment = np.zeros((self.recognizer_size_x,self.recognizer_size_y),dtype=np.uint8)

		    			segment[:,:] = black[ x * self.recognizer_size_x : (x * self.recognizer_size_x) + self.recognizer_size_x, y * self.recognizer_size_y : (y * self.recognizer_size_y) + self.recognizer_size_y]
		    			size_x = segment.shape[0]
		    			size_y = segment.shape[1]
		    			#cv2.imshow('img',np_arr_rgb[x * self.recognizer_size_x : (x * self.recognizer_size_x) + self.recognizer_size_x, y * self.recognizer_size_y : (y * self.recognizer_size_y) + self.recognizer_size_y,:])
		    			#cv2.waitKey(0)
		    			#cv2.destroyAllWindows()
		    			
		    		except ValueError as e:
		    			raise e

		    		nums = None
		    		num_counter = None
		    		freq_dic = None
		    		nums, num_counter = np.unique(segment[:,:], return_counts=True)
		    		freq_dic = dict(zip(nums,num_counter))

		    		try:
		    			if freq_dic[255]:
		    				if freq_dic[255] >= ((size_y*size_x) * self.white_tolerance):

		    					num_colors = freq_dic[255]
		    					possiblyFire = True
		    					if last_is_white:
		    						fi_x = (x*size_x) + size_x
		    						fi_y = (y*size_y) + size_y
		    					else:
		    						if ini_x > (x*size_x):
		    							ini_x = x*self.recognizer_size_x
		    						if ini_y > (y*size_y):
		    							ini_y = y*self.recognizer_size_y
		    						whites_pos_list.append([ini_x,ini_y])
		    						fi_x = (x*self.recognizer_size_x) + size_x
		    						fi_y = (y*self.recognizer_size_y) + size_y
		    						
		    					last_is_white = True
		    				else:
		    					pass            
		    		except KeyError:
		    			if last_is_white:
		    				whites_pos_list[-1].append(fi_x)
		    				whites_pos_list[-1].append(fi_y)
		    				whites_pos_list[-1].append(num_colors)
		    				num_colors = 0
		    				num_white_zones += 1
		    				ini_x = 999999
		    				ini_y = 999999
		    				fi_y = 0
		    				fi_x = 0
		    				last_is_white = False
		    			else:
		    				ini_x = 999999
		    				ini_y = 999999
		    				fi_y = 0
		    				fi_x = 0
		    
		    if possiblyFire:
		    	threads = []
		    	res = [None] * num_white_zones
		    	self.results_motion_detection = [[] for i in range(num_white_zones)]
		    	self.results_color_detection = [[] for i in range(num_white_zones)]
		    	print 'White zones: ',num_white_zones
		    	
		    	for zone in range(num_white_zones):
		    		
		    		ini_x = whites_pos_list[zone][0]
		    		ini_y = whites_pos_list[zone][1]
		    		fi_x = whites_pos_list[zone][2]
		    		fi_y = whites_pos_list[zone][3]
		    		num_colors = whites_pos_list[zone][4]
		    		segment = black[ini_x:fi_x,ini_y:fi_y]

		    		#print '1.- Identify SHAPE centroide zona: ',zone,' shape: ',segment.shape
		    		M = cv2.moments(segment)
		    		
		    		try:
		    			cY = int(M["m10"] / M["m00"])
		    			cX = int(M["m01"] / M["m00"])
		    			
		    		except ZeroDivisionError:
		    			print 'ZeroDivisionError analitzant la zona ',zone

		    		
		    		# retall de segments bastant buits utilitzan les coordenades del centroide blanc
		    		new_segment = None
		    		if cY > ((self.recognizer_size_y / 2) + (self.recognizer_size_y*0.20)):
		    			ini_y += int(self.recognizer_size_y*0.25)
					if cY < ((self.recognizer_size_y / 2) + (self.recognizer_size_y*0.20)):
						fi_y -= int(self.recognizer_size_y*0.25)
					if cX < ((self.recognizer_size_x / 2) + (self.recognizer_size_x*0.20)):
						fi_x -= int(self.recognizer_size_y*0.25)
					if cX > ((self.recognizer_size_y / 2) + (self.recognizer_size_y*0.20)):
						ini_x += int(self.recognizer_size_y*0.25)
						
					segment = black[ini_x:fi_x,ini_y:fi_y]
		    		M = cv2.moments(segment)
		    		cv2.imshow('img',np_arr_rgb)
		    		cv2.waitKey(0)
		    		cv2.destroyAllWindows()
		    				    		
		    		try:
		    			cY = int(M["m10"] / M["m00"])
		    			cX = int(M["m01"] / M["m00"])
		    		except ZeroDivisionError:
		    			print 'Identify: ZeroDivisionError analitzant la zona: ',zone
		    		
		    		if cX == 0 or cY == 0:
		    			print 'El centroide surt 0,0 per tant no analitzem aquesta zona. Deu ser redundant'
		    		else:
		    			#th = Thread(target = self.foo, args =())
		    			self.run(ini_x,ini_y,fi_x,fi_y,num_colors,zone,cX,cY)
		    			#th = Thread(target = self.run, args =(ini_x,ini_y,fi_x,fi_y,num_colors,zone,cX,cY))
		    			#threads.append(th)
		    			#th.start()
		    			#th.join()
				#for th in threads:
				#	th.join()
			else:
				print 'En este frame no hay fuego'
示例#12
0
        target_img = np.array(img_pil)

        small_img_pil = img_pil.resize((256, 256), resample=Image.LANCZOS)
        blurry_img_pil = small_img_pil.resize(img_pil.size, resample=Image.LANCZOS)
        blurry_img = np.array(blurry_img_pil)

        dataset = "training" if i < split_index else "validation"
        num_examples = 1 if dataset == "training" else 1

        for j in range(num_examples):
            x1, y1, x2, y2 = get_random_coordinates(target_img)

            target_window = target_img[y1:y2, x1:x2, :]
            blurry_window = blurry_img[y1:y2, x1:x2, :]

            img_hsl = rgb2hsl(target_window)
            blurry_img_hsl = rgb2hsl(blurry_window)
            # Input image has original lightness channel, but blurry hue and saturation
            img_hsl[:, :, 0] = blurry_img_hsl[:, :, 0]  # hue
            img_hsl[:, :, 1] = blurry_img_hsl[:, :, 1]  # saturation
            input_window = hsl2rgb(img_hsl)

            if random.random() > 0.5:
                # Apply horizontal flip to 50 % of the images
                input_window = np.fliplr(input_window)
                target_window = np.fliplr(target_window)

            Image.fromarray(input_window).save(
                DATA_DIR
                / "resolution_enhancer_dataset"
                / dataset
示例#13
0
文件: extract.py 项目: nan0s7/gvcci
    dominant_light = dominant_dark_and_light_colors[1]

    if (dominant_dark[0][2] > dominant_light[0][2]):
        tmp = dominant_light
        dominant_light = dominant_dark
        dominant_dark = tmp

    if config[background_color_param_name] == "dark":
        bg_color = dominant_dark
        fg_color = dominant_light
    elif config[background_color_param_name] == "light":
        bg_color = dominant_light
        fg_color = dominant_dark
    elif config[background_color_param_name][0] == "#":
        bg_color = hex2rgb(config[background_color_param_name])
        bg_color = hasel.rgb2hsl(np.array(bg_color).reshape(1, 1,
                                                            3)).reshape(1, 3)
        if (bg_color[2] < 0.5):
            fg_color = dominant_light
        else:
            fg_color = dominant_dark

    # TODO the gb colour detection sucks for light colors
    # TODO adjust the bg color by picking the nearest color cluster to it and assigning it that value
    # TODO bg color breaks for the isaac example because the black bg is a flat #000000 color that's filtered out

    # improved_centers = np.vstack((bg_fg_colors, improved_centers))

    # dark theme settings
    min_dark_contrast = 0.4
    min_light_contrast = 0.1