示例#1
0
def train():
    # prepare data
    tr_X, tr_y, _, te_X, te_y, te_na_list = pp_dev_data.GetAllData(
        fe_fd, agg_num, hop, fold)
    [batch_num, n_time, n_freq] = tr_X.shape

    print tr_X.shape, tr_y.shape
    print te_X.shape, te_y.shape

    # build model
    seq = Sequential()
    seq.add(InputLayer((n_time, n_freq)))
    seq.add(Flatten())  # flatten to 2d: (n_time, n_freq) to 1d:(n_time*n_freq)
    seq.add(Dropout(0.1))
    seq.add(Dense(n_hid, act=act))
    seq.add(Dropout(0.1))
    seq.add(Dense(n_hid, act=act))
    seq.add(Dropout(0.1))
    seq.add(Dense(n_hid, act=act))
    seq.add(Dropout(0.1))
    seq.add(Dense(n_out, act='sigmoid'))
    md = seq.compile()
    md.summary()

    # optimizer
    optimizer = Adam(1e-4)

    # callbacks
    # tr_err, te_err are frame based. To get event based err, run recognize.py
    validation = Validation(tr_x=tr_X,
                            tr_y=tr_y,
                            va_x=None,
                            va_y=None,
                            te_x=te_X,
                            te_y=te_y,
                            batch_size=2000,
                            metrics=['binary_crossentropy'],
                            call_freq=1,
                            dump_path=None)

    # save model
    pp_dev_data.CreateFolder(cfg.dev_md_fd)
    save_model = SaveModel(dump_fd=cfg.dev_md_fd, call_freq=10)

    # callbacks
    callbacks = [validation, save_model]

    # fit model
    md.fit(x=tr_X,
           y=tr_y,
           batch_size=2000,
           n_epochs=100,
           loss_func='binary_crossentropy',
           optimizer=optimizer,
           callbacks=callbacks,
           verbose=1)
示例#2
0
def train():

    # load data
    tr_X2d_mix, tr_X3d_mix, tr_y2d_chn0, tr_y2d_chn1, tr_y3d_chn0, tr_y3d_chn1 = pp_data.LoadData(
        cfg.fe_fft_fd, n_time, hop, na_list=cfg.tr_list)

    # build model
    lay_in0 = InputLayer(in_shape=((n_time, n_freq)), name='in1')
    lay_a0 = Flatten()(lay_in0)
    lay_a1 = Dense(n_hid, act='relu', name='a1')(lay_a0)
    lay_a2 = Dropout(0.2, name='a2')(lay_a1)
    lay_a3 = Dense(n_hid, act='relu', name='a3')(lay_a2)
    lay_a4 = Dropout(0.2, name='a4')(lay_a3)
    lay_a5 = Dense(n_hid, act='relu', name='a5')(lay_a4)
    lay_a6 = Dropout(0.2, name='a6')(lay_a5)
    lay_b1 = Dense(n_freq, act='sigmoid',
                   name='a7')(lay_a6)  # mask_left, shape: (N, n_freq)
    lay_c1 = Dense(n_freq, act='sigmoid',
                   name='a8')(lay_a6)  # mask_right, shape: (N, n_freq)
    lay_out_b = Lambda(mul,
                       name='out_b')([lay_b1,
                                      lay_in0])  # out_left, shape: (N, n_freq)
    lay_out_c = Lambda(mul, name='out_c')([lay_c1, lay_in0
                                           ])  # out_right, shape: (N, n_freq)

    md = Model(in_layers=[lay_in0],
               out_layers=[lay_out_b, lay_out_c],
               any_layers=[lay_in0, lay_b1, lay_c1])
    md.summary()

    # validation
    validation = Validation(tr_x=[np.abs(tr_y3d_chn0) + np.abs(tr_y3d_chn1)],
                            tr_y=[np.abs(tr_y2d_chn0),
                                  np.abs(tr_y2d_chn1)],
                            batch_size=100,
                            metrics=[loss_func],
                            call_freq=1,
                            dump_path=None)

    # save model
    if not os.path.exists(cfg.md_fd): os.makedirs(cfg.md_fd)
    save_model = SaveModel(dump_fd=cfg.md_fd, call_freq=2)

    # callbacks
    callbacks = [validation, save_model]

    # optimizer
    optimizer = Adam(1e-3)

    # fit model
    md.fit( [np.abs(tr_y3d_chn0)+np.abs(tr_y3d_chn1)], [np.abs(tr_y2d_chn0), np.abs(tr_y2d_chn1)], \
        batch_size=100, n_epochs=100, loss_func='mse', optimizer=optimizer, callbacks=callbacks, verbose=1 )
示例#3
0
tr_X, va_X, te_X = reshapeX(tr_X), reshapeX(va_X), reshapeX(te_X)

# init params
n_in = 784
n_hid = 500
n_out = 10

# sparse label to 1 of K categorical label
tr_y = sparse_to_categorical(tr_y, n_out)
va_y = sparse_to_categorical(va_y, n_out)
te_y = sparse_to_categorical(te_y, n_out)

### Build model
act = 'relu'
seq = Sequential()
seq.add(InputLayer(in_shape=(1, 28, 28)))
seq.add(Convolution2D(n_outfmaps=32, n_row=3, n_col=3, act='relu'))
seq.add(MaxPool2D(pool_size=(2, 2)))
seq.add(Convolution2D(n_outfmaps=32, n_row=3, n_col=3, act='relu'))
seq.add(MaxPool2D(pool_size=(2, 2)))
seq.add(Dropout(0.2))
seq.add(Flatten())
seq.add(Dense(n_hid, act='relu'))
seq.add(Dropout(0.5))
seq.add(Dense(n_hid, act='relu'))
seq.add(Dense(n_out, act='softmax'))
md = seq.combine()

# print summary info of model
md.summary()
# load & prepare data
tr_x, tr_y, va_x, va_y, te_x, te_y = load_mnist()

# init params
n_in = 784
n_hid = 500
n_out = 10

# sparse label to 1-of-K categorical label
tr_y = sparse_to_categorical(tr_y, n_out)
va_y = sparse_to_categorical(va_y, n_out)
te_y = sparse_to_categorical(te_y, n_out)

### Build model

lay_in = InputLayer(in_shape=(n_in, ))
a = Dense(n_out=n_hid, act='relu', name='dense1')(lay_in)
a = Dropout(p_drop=0.2)(a)
a = Dense(n_out=n_hid, act='relu', name='dense2')(a)
a = Dropout(p_drop=0.2)(a)
lay_out = Dense(n_out=n_out, act='softmax')(a)

md = Model(in_layers=[lay_in], out_layers=[lay_out])
md.compile()
md.summary()

# observe forward
observe_nodes = [
    md.find_layer('dense1').output_,
    md.find_layer('dense2').output_
]
示例#5
0
act = 'relu'
n_hid = 500
fold = 1
n_out = len(cfg.labels)

# prepare data
tr_X, tr_y, _ = pp_dev_data.GetAllData(cfg.dev_fe_mel_fd,
                                       agg_num,
                                       hop,
                                       fold=None)
[batch_num, n_time, n_freq] = tr_X.shape
print tr_X.shape, tr_y.shape

# build model
seq = Sequential()
seq.add(InputLayer((n_time, n_freq)))
seq.add(Flatten())  # flatten to 2d: (n_time, n_freq) to 1d:(n_time*n_freq)
seq.add(Dropout(0.1))
seq.add(Dense(n_hid, act=act))
seq.add(Dropout(0.1))
seq.add(Dense(n_hid, act=act))
seq.add(Dropout(0.1))
seq.add(Dense(n_hid, act=act))
seq.add(Dropout(0.1))
seq.add(Dense(n_out, act='sigmoid'))
md = seq.compile()
md.summary()

# validation
# tr_err, te_err are frame based. To get event based err, run recognize.py
validation = Validation(tr_x=tr_X,
def train():

    # create empty folders in workspace
    create_folders()

    # get dev & eva data
    tr_X, tr_y, _, _, _, _ = pp_dev_data.GetSegData(dev_fe_fd,
                                                    agg_num,
                                                    hop,
                                                    fold=None)
    te_X, te_na_list = pp_eva_data.GetEvaSegData(eva_fe_fd, agg_num, hop)

    [n_songs, n_chunks, _, n_in] = tr_X.shape
    print tr_X.shape, tr_y.shape
    print te_X.shape

    # model
    lay_in0 = InputLayer(
        (n_chunks, agg_num, n_in),
        name='in0')  # shape: (n_songs, n_chunk, agg_num, n_in)
    lay_a1 = Flatten(3, name='a1')(
        lay_in0)  # shape: (n_songs, n_chunk, agg_num*n_in)
    lay_a2 = Dense(n_hid,
                   act='relu')(lay_a1)  # shape: (n_songs, n_chunk, n_hid)
    lay_a3 = Dropout(0.2)(lay_a2)
    lay_a4 = Dense(n_hid, act='relu')(lay_a3)
    lay_a5 = Dropout(0.2)(lay_a4)
    lay_a6 = Dense(n_hid, act='relu')(lay_a5)
    lay_a7 = Dropout(0.2)(lay_a6)
    lay_a8 = Dense(n_out, act='sigmoid', b_init=-1,
                   name='a8')(lay_a7)  # shape: (n_songs, n_chunk, n_out)

    md = Model(in_layers=[lay_in0], out_layers=[lay_a8], any_layers=[])
    md.compile()
    md.summary()

    # callback, write out dection scores to .txt each epoch
    dump_fd = cfg.scrap_fd + '/Results_eva/bob_eer'
    print_scores = cb_eer.PrintScoresBagOfBlocks(te_X,
                                                 te_na_list,
                                                 dump_fd,
                                                 call_freq=1)

    # callback, print loss each epoch
    validation = Validation(tr_x=tr_X,
                            tr_y=tr_y,
                            va_x=None,
                            va_y=None,
                            te_x=None,
                            te_y=None,
                            metrics=[loss_func],
                            call_freq=1,
                            dump_path=None)

    # callback, save model every N epochs
    save_model = SaveModel(dump_fd=cfg.scrap_fd + '/Md_eva_bob', call_freq=10)

    # combine all callbacks
    callbacks = [validation, save_model, print_scores]

    # optimizer
    optimizer = Adam(2e-4)

    # fit model
    md.fit(x=tr_X,
           y=tr_y,
           batch_size=10,
           n_epochs=301,
           loss_func=loss_func,
           optimizer=optimizer,
           callbacks=callbacks)
示例#7
0
# reshape X to shape: (n_pictures, n_fmaps=3, n_row=32, n_col=32)
tr_X = reshape_img_for_cnn(tr_X)
te_X = reshape_img_for_cnn(te_X)

# init params
n_out = 10

# sparse label to 1-of-K categorical label
tr_y = sparse_to_categorical(tr_y, n_out)
te_y = sparse_to_categorical(te_y, n_out)
print tr_X.shape
print tr_y.shape

### Build model
seq = Sequential()
seq.add(InputLayer(in_shape=(3, 32, 32)))

seq.add(
    Convolution2D(n_outfmaps=64,
                  n_row=3,
                  n_col=3,
                  act='linear',
                  border_mode=(1, 1)))
seq.add(BN(axes=(0, 2, 3)))
seq.add(Activation('relu'))
seq.add(
    Convolution2D(n_outfmaps=64,
                  n_row=3,
                  n_col=3,
                  act='linear',
                  border_mode=(1, 1)))
示例#8
0
                           n_row=3,
                           n_col=3,
                           act='linear',
                           border_mode=(1, 1),
                           strides=(1, 1))(a3)
        a5 = BN(axes=(0, 2, 3))(a4)
        a6 = Activation('relu')(a5)

        a7 = Lambda(add_layers)([shortcut, a6])

        a0 = a7

    return a0


x0 = InputLayer(in_shape=(3, 32, 32))
x1 = Convolution2D(n_outfmaps=64,
                   n_row=3,
                   n_col=3,
                   act='relu',
                   border_mode=(1, 1))(x0)
x2 = add_n_blocks(x1, n_outfmaps=64, n_repeat=3, is_first_layer=True)
x3 = add_n_blocks(x2, n_outfmaps=128, n_repeat=4, is_first_layer=False)
x4 = add_n_blocks(x3, n_outfmaps=256, n_repeat=6, is_first_layer=False)
x5 = add_n_blocks(x4, n_outfmaps=512, n_repeat=3, is_first_layer=False)

y1 = Lambda(mean_pool)(x5)
y2 = Flatten()(y1)
y3 = Dense(n_out, act='softmax')(y2)
md = Model([x0], [y3])
示例#9
0
# load & prepare data
tr_x, tr_y, va_x, va_y, te_x, te_y = load_mnist()

# init params
n_in = 784
n_hid = 500
n_out = 10

# sparse label to 1-of-K categorical label
tr_y = sparse_to_categorical(tr_y, n_out)
va_y = sparse_to_categorical(va_y, n_out)
te_y = sparse_to_categorical(te_y, n_out)

### Build model
lay_in1 = InputLayer(in_shape=(n_in, ))
lay_in2 = InputLayer(in_shape=(n_in, ))
a1 = Dense(n_out=n_hid, act='relu')(lay_in1)
a2 = Dense(n_out=n_hid, act='relu')(lay_in2)
b = Lambda(merge)([a1, a2])
b = Dense(n_out=n_hid, act='relu')(b)
lay_out1 = Dense(n_out=n_out, act='softmax')(b)
lay_out2 = Dense(n_out=n_out, act='softmax')(b)

md = Model(in_layers=[lay_in1, lay_in2], out_layers=[lay_out1, lay_out2])
md.compile()
md.summary()

# validate model every n epoch (optional)
validation = Validation(tr_x=[tr_x, tr_x],
                        tr_y=[tr_y, tr_y],
def train_cv_model():
    # init path
    if type == 'home':
        fe_fd = cfg.dev_fe_mel_home_fd
        labels = cfg.labels_home
        lb_to_id = cfg.lb_to_id_home
        tr_txt = cfg.dev_evaluation_fd + '/home_fold' + str(
            fold) + '_train.txt'
        te_txt = cfg.dev_evaluation_fd + '/home_fold' + str(
            fold) + '_evaluate.txt'
    if type == 'resi':
        fe_fd = cfg.dev_fe_mel_resi_fd
        labels = cfg.labels_resi
        lb_to_id = cfg.lb_to_id_resi
        tr_txt = cfg.dev_evaluation_fd + '/residential_area_fold' + str(
            fold) + '_train.txt'
        te_txt = cfg.dev_evaluation_fd + '/residential_area_fold' + str(
            fold) + '_evaluate.txt'

    n_out = len(labels)

    # load data to list
    tr_X, tr_y = pp_dev_data.LoadAllData(fe_fd, tr_txt, lb_to_id, agg_num, hop)
    tr_y = sparse_to_categorical(tr_y, n_out)

    print tr_X.shape
    print tr_y.shape
    n_freq = tr_X.shape[2]

    # build model
    seq = Sequential()
    seq.add(InputLayer((agg_num, n_freq)))
    seq.add(Flatten())
    seq.add(Dense(n_hid, act='relu'))
    seq.add(Dropout(0.1))
    seq.add(Dense(n_hid, act='relu'))
    seq.add(Dropout(0.1))
    seq.add(Dense(n_hid, act='relu'))
    seq.add(Dropout(0.1))
    seq.add(Dense(n_out, 'sigmoid'))
    md = seq.combine()

    # print summary info of model
    md.summary()

    # optimization method
    optimizer = Adam(1e-3)

    # callbacks (optional)
    # save model every n epoch
    pp_dev_data.CreateFolder(cfg.dev_md_fd)
    save_model = SaveModel(dump_fd=cfg.dev_md_fd, call_freq=5)

    # validate model every n epoch
    validation = Validation(tr_x=tr_X,
                            tr_y=tr_y,
                            va_x=None,
                            va_y=None,
                            te_x=None,
                            te_y=None,
                            metrics=['binary_crossentropy'],
                            call_freq=1,
                            dump_path=None)

    # callbacks function
    callbacks = [validation, save_model]

    # train model
    md.fit(x=tr_X,
           y=tr_y,
           batch_size=20,
           n_epochs=100,
           loss_func='binary_crossentropy',
           optimizer=optimizer,
           callbacks=callbacks)
示例#11
0
### load & prepare data
tr_X, tr_y, va_X, va_y, te_X, te_y = load_data()

# init params
n_in = 784
n_hid = 500
n_out = 10

# sparse label to 1-of-K categorical label
tr_y = sparse_to_categorical(tr_y, n_out)
va_y = sparse_to_categorical(va_y, n_out)
te_y = sparse_to_categorical(te_y, n_out)

### Build model
seq = Sequential()
seq.add(InputLayer(n_in))
seq.add(Dense(n_hid, act='relu'))
seq.add(Dropout(p_drop=0.2))
seq.add(Dense(n_hid, act='relu'))
seq.add(Dropout(p_drop=0.2))
seq.add(Dense(n_out, act='softmax'))
md = seq.combine()

# print summary info of model
md.summary()
# md.plot_connection()

### optimization method
optimizer = Adam(lr=0.001)  # Try SGD, Adagrad, Rmsprop, etc. instead

### callbacks (optional)
def train():
    _loss_func = _jdc_loss_func0
    
    # load data
    t1 = time.time()
    dict = cPickle.load( open( cfg.scrap_fd+'/denoise_enhance_pool_fft_all0.p', 'rb' ) )
    tr_X, tr_mask, tr_y, tr_na_list, te_X, te_mask, te_y, te_na_list = dict['tr_X'], dict['tr_mask'], dict['tr_y'], dict['tr_na_list'], dict['te_X'], dict['te_mask'], dict['te_y'], dict['te_na_list']
    t2 = time.time()
    
    tr_X = pp_data.wipe_click( tr_X, tr_na_list )
    te_X = pp_data.wipe_click( te_X, te_na_list )
    
    # balance data
    tr_X, tr_mask, tr_y = pp_data.BalanceData2( tr_X, tr_mask, tr_y )
    te_X, te_mask, te_y = pp_data.BalanceData2( te_X, te_mask, te_y )
    
    
    print tr_X.shape, tr_y.shape, te_X.shape, te_y.shape
    [n_songs, n_chunks, n_freq] = te_X.shape
    
    tr_y = tr_y.reshape( (len(tr_y), 1) )
    te_y = te_y.reshape( (len(te_y), 1) )
    
    
    # jdc model
    # classifier
    lay_z0 = InputLayer( (n_chunks,) )          # shape:(n_songs, n_chunks) keep the length of songs
    
    lay_in0 = InputLayer( (n_chunks, n_freq), name='in0' )   # shape: (n_songs, n_chunk, n_freq)
    lay_a1 = lay_in0
    # lay_a1 = Lambda( _conv2d )( lay_a1 )
    
    lay_a1 = Lambda( _reshape_3d_to_4d )( lay_a1 )
    lay_a1 = Convolution2D( 32, 3, 3, act='relu', init_type='glorot_uniform', border_mode=(1,1), strides=(1,1), name='a11' )( lay_a1 )
    lay_a1 = Dropout( 0.2 )( lay_a1 )
    lay_a1 = MaxPool2D( pool_size=(1,2) )( lay_a1 )
    
    lay_a1 = Convolution2D( 64, 3, 3, act='relu', init_type='glorot_uniform', border_mode=(1,1), strides=(1,1), name='a12' )( lay_a1 )
    lay_a1 = Dropout( 0.2 )( lay_a1 )
    lay_a1 = MaxPool2D( pool_size=(1,2) )( lay_a1 )
    lay_a1 = Lambda( _reshape_4d_to_3d )( lay_a1 )
    
    lay_a1 = Dense( n_hid, act='relu', name='a2' )( lay_a1 )       # shape: (n_songs, n_chunk, n_hid)
    lay_a1 = Dropout( 0.2 )( lay_a1 )
    lay_a1 = Dense( n_hid, act='relu', name='a4' )( lay_a1 )
    lay_a1 = Dropout( 0.2 )( lay_a1 )
    lay_a1 = Dense( n_hid, act='relu', name='a6' )( lay_a1 )
    lay_a1 = Dropout( 0.2 )( lay_a1 )
    lay_a8 = Dense( n_out, act='sigmoid', init_type='zeros', b_init=0, name='a8' )( lay_a1 )     # shape: (n_songs, n_chunk, n_out)
    
    # detector
    lay_b1 = lay_in0     # shape: (n_songs, n_chunk, n_freq)
    lay_b2 = Lambda( _conv2d )( lay_b1 )    # shape: (n_songs, n_chunk, n_freq)
    lay_b2 = Lambda( _reshape_3d_to_4d )( lay_b1 )
    lay_b2 = MaxPool2D( pool_size=(1,2) )( lay_b2 )
    lay_b2 = Lambda( _reshape_4d_to_3d )( lay_b2 )
    lay_b8 = Dense( n_out, act='hard_sigmoid', init_type='zeros', b_init=-2.3, name='b8' )( lay_b2 )
    md = Model( in_layers=[lay_in0, lay_z0], out_layers=[lay_a8, lay_b8], any_layers=[] )
    
      
    # print summary info of model
    md.summary()

    # callbacks (optional)
    # save model every n epoch (optional)
    pp_data.CreateFolder( cfg.wbl_dev_md_fd )
    pp_data.CreateFolder( cfg.wbl_dev_md_fd+'/cnn_fft' )
    save_model = SaveModel( dump_fd=cfg.wbl_dev_md_fd+'/cnn_fft', call_freq=20, type='iter' )
    validation = Validation( tr_x=None, tr_y=None, va_x=None, va_y=None, te_x=[te_X, te_mask], te_y=te_y, batch_size=100, metrics=[_loss_func], call_freq=20, dump_path=None, type='iter' )
    
    # callbacks function
    callbacks = [save_model, validation]

    
    # EM training
    md.set_gt_nodes( tr_y )
    md.find_layer('a11').set_trainable_params( ['W','b'] )
    md.find_layer('a12').set_trainable_params( ['W','b'] )
    md.find_layer('a2').set_trainable_params( ['W','b'] )
    md.find_layer('a4').set_trainable_params( ['W','b'] )
    md.find_layer('a6').set_trainable_params( ['W','b'] )
    md.find_layer('a8').set_trainable_params( ['W','b'] )
    md.find_layer('b8').set_trainable_params( [] )
    opt_classifier = Adam( 1e-3 )
    f_classify = md.get_optimization_func( loss_func=_loss_func, optimizer=opt_classifier, clip=None )
    
    
    md.find_layer('a11').set_trainable_params( [] )
    md.find_layer('a12').set_trainable_params( [] )
    md.find_layer('a2').set_trainable_params( [] )
    md.find_layer('a4').set_trainable_params( [] )
    md.find_layer('a6').set_trainable_params( [] )
    md.find_layer('a8').set_trainable_params( [] )
    md.find_layer('b8').set_trainable_params( ['W','b'] )
    opt_detector = Adam( 1e-3 )
    f_detector = md.get_optimization_func( loss_func=_loss_func, optimizer=opt_detector, clip=None )
    
    
    _x, _y = md.preprocess_data( [tr_X, tr_mask], tr_y, shuffle=True )
    
    for i1 in xrange(500):
        print '-----------------------'
        opt_classifier.reset()
        md.do_optimization_func_iter_wise( f_classify, _x, _y, batch_size=100, n_iters=80, callbacks=callbacks, verbose=1 )
        print '-----------------------'
        opt_detector.reset()
        md.do_optimization_func_iter_wise( f_detector, _x, _y, batch_size=100, n_iters=20, callbacks=callbacks, verbose=1 )
示例#13
0
tr_x = reshape(tr_x)
va_x = reshape(va_x)
te_x = reshape(te_x)

# init params
n_in = 784
n_hid = 500
n_out = 10

# sparse label to 1-of-K categorical label
tr_y = sparse_to_categorical(tr_y, n_out)
va_y = sparse_to_categorical(va_y, n_out)
te_y = sparse_to_categorical(te_y, n_out)

### Build model
lay_in = InputLayer(in_shape=(1, 28, 28))

a = Conv2D(n_outfmaps=32, n_row=3, n_col=3, act='linear', strides=(1, 1), border_mode=(1, 1))(lay_in)
a = BN(axis=(0, 2, 3))(a)
a = Activation('relu')(a)
a = MaxPooling2D(pool_size=(2, 2))(a)
a = Dropout(p_drop=0.2)(a)

a = Conv2D(n_outfmaps=64, n_row=3, n_col=3, act='linear', strides=(1, 1), border_mode=(1, 1))(a)
a = BN(axis=(0, 2, 3))(a)
a = Activation('relu')(a)
a = MaxPooling2D(pool_size=(2, 2))(a)
a = Dropout(p_drop=0.2)(a)

a = Conv2D(n_outfmaps=128, n_row=3, n_col=3, act='linear', strides=(1, 1), border_mode=(1, 1))(a)
a = BN(axis=(0, 2, 3))(a)
示例#14
0
def train():

    # create empty folders in workspace
    create_folders()

    # prepare data
    tr_X, tr_y, _, va_X, va_y, va_na_list = pp_dev_data.GetSegData(
        fe_fd, agg_num, hop, fold)
    [n_songs, n_chunks, _, n_in] = tr_X.shape

    print tr_X.shape, tr_y.shape
    print va_X.shape, va_y.shape

    # model
    # classifier
    lay_in0 = InputLayer(
        (n_chunks, agg_num, n_in),
        name='in0')  # shape: (n_songs, n_chunk, agg_num, n_in)
    lay_a1 = Flatten(3, name='a1')(
        lay_in0)  # shape: (n_songs, n_chunk, agg_num*n_in)
    lay_a2 = Dense(n_hid,
                   act='relu')(lay_a1)  # shape: (n_songs, n_chunk, n_hid)
    lay_a3 = Dropout(0.2)(lay_a2)
    lay_a4 = Dense(n_hid, act='relu')(lay_a3)
    lay_a5 = Dropout(0.2)(lay_a4)
    lay_a6 = Dense(n_hid, act='relu')(lay_a5)
    lay_a7 = Dropout(0.2)(lay_a6)
    lay_a8 = Dense(n_out, act='sigmoid', b_init=-1,
                   name='a8')(lay_a7)  # shape: (n_songs, n_chunk, n_out)

    # detector
    lay_b1 = Lambda(mean_pool)(lay_in0)  # shape: (n_songs, n_chunk, n_out)
    lay_b8 = Dense(n_out, act='sigmoid',
                   name='b4')(lay_b1)  # shape: (n_songs, n_chunk, n_out)

    md = Model(in_layers=[lay_in0], out_layers=[lay_a8, lay_b8], any_layers=[])
    md.compile()
    md.summary()

    # callback, write out dection scores to .txt each epoch
    dump_fd = cfg.scrap_fd + '/Results_dev/jdc_eer/fold' + str(fold)
    print_scores = cb_eer.PrintScoresDetectionClassification(va_X,
                                                             va_na_list,
                                                             dump_fd,
                                                             call_freq=1)

    # callback, print loss each epoch
    validation = Validation(tr_x=tr_X,
                            tr_y=tr_y,
                            va_x=va_X,
                            va_y=va_y,
                            te_x=None,
                            te_y=None,
                            metrics=[loss_func],
                            call_freq=1,
                            dump_path=None)

    # callback, save model every N epochs
    save_model = SaveModel(dump_fd=cfg.scrap_fd + '/Md_dev_jdc', call_freq=10)

    # combine all callbacks
    callbacks = [validation, save_model, print_scores]

    # optimizer
    # optimizer = SGD( 0.01, 0.95 )
    optimizer = Adam(2e-4)

    # fit model
    md.fit(x=tr_X,
           y=tr_y,
           batch_size=10,
           n_epochs=301,
           loss_func=loss_func,
           optimizer=optimizer,
           callbacks=callbacks)
示例#15
0
def train(tr_fe_fd, tr_csv_file, te_fe_fd, te_csv_file, n_concat, hop, scaler,
          out_md_fd):
    # Prepare data
    tr_x, tr_y = pp_data.get_matrix_format_data(fe_fd=tr_fe_fd,
                                                csv_file=tr_csv_file,
                                                n_concat=n_concat,
                                                hop=hop,
                                                scaler=scaler)

    te_x, te_y = pp_data.get_matrix_format_data(fe_fd=te_fe_fd,
                                                csv_file=te_csv_file,
                                                n_concat=n_concat,
                                                hop=hop,
                                                scaler=scaler)

    n_freq = tr_x.shape[2]
    print 'tr_x.shape:', tr_x.shape  # (n_samples, n_concat, n_freq)
    print 'tr_y.shape:', tr_y.shape  # (n_samples, n_labels)

    # Build model
    n_out = len(cfg.labels)
    seq = Sequential()
    seq.add(InputLayer((n_concat, n_freq)))
    seq.add(Flatten())
    seq.add(Dropout(0.2))
    seq.add(Dense(200, act='relu'))
    seq.add(Dropout(0.2))
    seq.add(Dense(200, act='relu'))
    seq.add(Dropout(0.2))
    seq.add(Dense(n_out, act='softmax'))
    md = seq.compile()
    md.summary()

    # Validation.
    # tr_err, te_err are frame based. To get event based err, run recognize.py
    validation = Validation(tr_x=tr_x,
                            tr_y=tr_y,
                            va_x=None,
                            va_y=None,
                            te_x=te_x,
                            te_y=te_y,
                            batch_size=500,
                            call_freq=1,
                            dump_path=None)

    # Save model
    pp_data.create_folder(out_md_fd)
    save_model = SaveModel(out_md_fd, call_freq=2)

    # Callbacks
    callbacks = [validation, save_model]

    # Optimizer
    optimizer = Adam(1e-3)

    # fit model
    md.fit(x=tr_x,
           y=tr_y,
           batch_size=100,
           n_epochs=101,
           loss_func='categorical_crossentropy',
           optimizer=optimizer,
           callbacks=callbacks)
示例#16
0
# pad & truncate sequences
tr_X = pad_trunc_seqs(tr_X, max_len, pad_type='pre')
te_X = pad_trunc_seqs(te_X, max_len, pad_type='pre')

# sparse target to categorical target
tr_y = sparse_to_categorical(tr_y, n_out)
te_y = sparse_to_categorical(te_y, n_out)


### build model
def mean_pool(input):
    return K.mean(input, axis=1)


seq = Sequential()
seq.add(InputLayer(max_len))
seq.add(Embedding(n_words, n_proj))
seq.add(LSTM(n_hid, 'tanh', return_sequence=True))  # Try RNN, GRU instead
seq.add(Lambda(mean_pool))
seq.add(Dense(n_out, 'softmax'))
md = seq.combine()

# print summary info of model
md.summary()

### optimization method
optimizer = Rmsprop(0.001)

### callbacks (optional)
# save model every n epoch (optional)
if not os.path.exists('Md'): os.makedirs('Md')  # create folder