示例#1
0
def test_eval_finder(document_store: BaseDocumentStore, reader):
    retriever = ElasticsearchRetriever(document_store=document_store)
    finder = Finder(reader=reader, retriever=retriever)

    # add eval data (SQUAD format)
    document_store.delete_all_documents(index="test_eval_document")
    document_store.delete_all_documents(index="test_feedback")
    document_store.add_eval_data(filename="samples/squad/tiny.json", doc_index="test_eval_document", label_index="test_feedback")
    assert document_store.get_document_count(index="test_eval_document") == 2

    # eval finder
    results = finder.eval(label_index="test_feedback", doc_index="test_eval_document", top_k_retriever=1, top_k_reader=5)
    assert results["retriever_recall"] == 1.0
    assert results["retriever_map"] == 1.0
    assert abs(results["reader_topk_f1"] - 0.66666) < 0.001
    assert abs(results["reader_topk_em"] - 0.5) < 0.001
    assert abs(results["reader_topk_accuracy"] - 1) < 0.001
    assert results["reader_top1_f1"] <= results["reader_topk_f1"]
    assert results["reader_top1_em"] <= results["reader_topk_em"]
    assert results["reader_top1_accuracy"] <= results["reader_topk_accuracy"]

    # batch eval finder
    results_batch = finder.eval_batch(label_index="test_feedback", doc_index="test_eval_document", top_k_retriever=1,
                          top_k_reader=5)
    assert results_batch["retriever_recall"] == 1.0
    assert results_batch["retriever_map"] == 1.0
    assert results_batch["reader_top1_f1"] == results["reader_top1_f1"]
    assert results_batch["reader_top1_em"] == results["reader_top1_em"]
    assert results_batch["reader_topk_accuracy"] == results["reader_topk_accuracy"]

    # clean up
    document_store.delete_all_documents(index="test_eval_document")
    document_store.delete_all_documents(index="test_feedback")
示例#2
0
document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document", create_index=False)
# Add evaluation data to Elasticsearch database
if LAUNCH_ELASTICSEARCH:
    document_store.add_eval_data("../data/nq/nq_dev_subset.json")
else:
    logger.warning("Since we already have a running ES instance we should not index the same documents again."
                   "If you still want to do this call: 'document_store.add_eval_data('../data/nq/nq_dev_subset.json')' manually ")

# Initialize Retriever
retriever = ElasticsearchRetriever(document_store=document_store)

# Initialize Reader
reader = FARMReader("deepset/roberta-base-squad2")

# Initialize Finder which sticks together Reader and Retriever
finder = Finder(reader, retriever)


## Evaluate Retriever on its own
if eval_retriever_only:
    retriever_eval_results = retriever.eval()
    ## Retriever Recall is the proportion of questions for which the correct document containing the answer is
    ## among the correct documents
    print("Retriever Recall:", retriever_eval_results["recall"])
    ## Retriever Mean Avg Precision rewards retrievers that give relevant documents a higher rank
    print("Retriever Mean Avg Precision:", retriever_eval_results["map"])

# Evaluate Reader on its own
if eval_reader_only:
    reader_eval_results = reader.eval(document_store=document_store, device=device)
    # Evaluation of Reader can also be done directly on a SQuAD-formatted file without passing the data to Elasticsearch
示例#3
0
# Alternative: Evaluate DensePassageRetriever
# Note, that DPR works best when you index short passages < 512 tokens as only those tokens will be used for the embedding.
# Here, for nq_dev_subset_v2.json we have avg. num of tokens = 5220(!).
# DPR still outperforms Elastic's BM25 by a small margin here.

# from haystack.retriever.dense import DensePassageRetriever
# retriever = DensePassageRetriever(document_store=document_store, embedding_model="dpr-bert-base-nq",batch_size=32)
# document_store.update_embeddings(retriever, index="eval_document")


# Initialize Reader
reader = FARMReader("deepset/roberta-base-squad2")

# Initialize Finder which sticks together Reader and Retriever
finder = Finder(reader, retriever)


## Evaluate Retriever on its own
if eval_retriever_only:
    retriever_eval_results = retriever.eval(top_k=1, label_index=label_index, doc_index=doc_index)
    ## Retriever Recall is the proportion of questions for which the correct document containing the answer is
    ## among the correct documents
    print("Retriever Recall:", retriever_eval_results["recall"])
    ## Retriever Mean Avg Precision rewards retrievers that give relevant documents a higher rank
    print("Retriever Mean Avg Precision:", retriever_eval_results["map"])

# Evaluate Reader on its own
if eval_reader_only:
    reader_eval_results = reader.eval(document_store=document_store, device=device, label_index=label_index, doc_index=doc_index)
    # Evaluation of Reader can also be done directly on a SQuAD-formatted file without passing the data to Elasticsearch
示例#4
0
document_store = ElasticsearchDocumentStore(host="localhost",
                                            username="",
                                            password="",
                                            index="document",
                                            create_index=False)
# Add evaluation data to Elasticsearch database
document_store.add_eval_data("../data/nq/nq_dev_subset.json")

# Initialize Retriever
retriever = ElasticsearchRetriever(document_store=document_store)

# Initialize Reader
reader = FARMReader("deepset/roberta-base-squad2")

# Initialize Finder which sticks together Reader and Retriever
finder = Finder(reader, retriever)

# Evaluate Retriever on its own
retriever_eval_results = retriever.eval()
## Retriever Recall is the proportion of questions for which the correct document containing the answer is
## among the correct documents
print("Retriever Recall:", retriever_eval_results["recall"])
## Retriever Mean Avg Precision rewards retrievers that give relevant documents a higher rank
print("Retriever Mean Avg Precision:", retriever_eval_results["map"])

# Evaluate Reader on its own
reader_eval_results = reader.eval(document_store=document_store, device=device)
# Evaluation of Reader can also be done directly on a SQuAD-formatted file without passing the data to Elasticsearch
#reader_eval_results = reader.eval_on_file("../data/natural_questions", "dev_subset.json", device=device)

## Reader Top-N-Recall is the proportion of predicted answers that overlap with their corresponding correct answer