def sfig1(): df = pd.merge( add_net_meta(normalize(acw.gen_long_data(tpt_name), columns="metric"), get_net("pmc", tpt_name)) \ .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index().rename(columns={"metric": "acw"}), add_net_meta(normalize(acz.gen_long_data(tpt_name), columns="metric"), get_net("pmc", tpt_name)) \ .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index().rename(columns={"metric": "acz"}), on=["task", "subject", "region", "net_meta"], sort=False) fig, axs = plt.subplots(2, 2, figsize=(15, 10), sharex=True, sharey="col") ax = axs[0, 0] sns.distplot(df.groupby(["task", "subject"]).mean().reset_index().acw, ax=ax, rug=False, kde=True, hist=True) ax.set(xlabel=f"Normalized ACW-50 for subjects") ax.grid(False) ax = axs[1, 0] sns.distplot(df.groupby(["task", "region"]).mean().reset_index().acw, ax=ax, rug=False, kde=True, hist=True) ax.set(xlabel=f"Normalized ACW-50 for regions") ax.grid(False) ax = axs[0, 1] sns.distplot(df.groupby(["task", "subject"]).mean().reset_index().acz, ax=ax, rug=False, kde=True, hist=True) ax.grid(False) ax.set(xlabel=f"Normalized ACW-0 for subjects") ax = axs[1, 1] sns.distplot(df.groupby(["task", "region"]).mean().reset_index().acz, ax=ax, rug=False, kde=True, hist=True) ax.set(xlabel=f"Normalized ACW-0 for regions") ax.grid(False) fig.subplots_adjust(wspace=0.1, hspace=0.1) savefig(fig, "sfig1.dist.nolabel")
def fig5(): _, mask, _, networks, regions, brain_axis = get_template(tpt_name, space) tasks = task_order(True) df = acw.gen_long_data(tpt_name).groupby(["task", "region"]).mean().reset_index() df.metric *= 1000 output = np.zeros((len(tasks), mask.size)) for i, task in enumerate(tasks): values = and_filter(df, task=task).values for reg, pc in values: reg_index = np.argmax(regions == reg) + 1 if reg_index == 0: print("0 reg_index in %s" % reg) output[i, np.argwhere(mask == reg_index)] = pc savemap("fig5.acw.map", output, brain_axis, cifti.Series(0, 1, output.shape[0])) tasks = task_order(True) df = acz.gen_long_data(tpt_name).groupby(["task", "region"]).mean().reset_index() df.metric *= 1000 output = np.zeros((len(tasks), mask.size)) for i, task in enumerate(tasks): values = and_filter(df, task=task).values for reg, pc in values: reg_index = np.argmax(regions == reg) + 1 if reg_index == 0: print("0 reg_index in %s" % reg) output[i, np.argwhere(mask == reg_index)] = pc savemap("fig5.acz.map", output, brain_axis, cifti.Series(0, 1, output.shape[0]))
def corr(): df = add_net_meta(normalize(acw.gen_long_data(tpt_name), columns="metric"), get_net("pmc", tpt_name)) \ .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index() df1 = add_net_meta(normalize(acz.gen_long_data(tpt_name), columns="metric"), get_net("pmc", tpt_name)) \ .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index() correlations = [] for task in task_order(): dft = and_filter(df, task=task) subjects = dft.subject.unique() df_corr = np.zeros((len(subjects), len(subjects))) for i in range(len(subjects)): df_corr[i, i] = 1 x = and_filter(dft, subject=subjects[i]).metric for j in range(i + 1, len(subjects)): y = and_filter(dft, subject=subjects[j]).metric df_corr[i, j] = df_corr[j, i] = pearsonr(x, y)[0] correlations.append(df_corr) correlations1 = [] for task in task_order(): dft = and_filter(df1, task=task) subjects = dft.subject.unique() df_corr = np.zeros((len(subjects), len(subjects))) for i in range(len(subjects)): df_corr[i, i] = 1 x = and_filter(dft, subject=subjects[i]).metric for j in range(i + 1, len(subjects)): y = and_filter(dft, subject=subjects[j]).metric df_corr[i, j] = df_corr[j, i] = pearsonr(x, y)[0] correlations1.append(df_corr) min_val, max_val = 0, 1 ticks = np.arange(min_val, max_val, 0.1) cmap = cm.get_cmap("jet") fig, axs = plt.subplots(2, 4, figsize=(20, 10)) for i, task in enumerate(task_order()): ax = axs[0, i] isc = correlations[i] pp = ax.imshow(isc, interpolation="nearest", vmin=min_val, vmax=max_val, cmap=cmap) ax.xaxis.tick_top() down, up = sms.DescrStatsW(isc[np.triu_indices(len(isc), 1)]).tconfint_mean() ax.set_title(f"ACW-50 {task}: {down:.2f}:{up:.2f}") for i, task in enumerate(task_order()): ax = axs[1, i] isc = correlations1[i] pp = ax.imshow(isc, interpolation="nearest", vmin=min_val, vmax=max_val, cmap=cmap) ax.xaxis.tick_top() down, up = sms.DescrStatsW(isc[np.triu_indices(len(isc), 1)]).tconfint_mean() ax.set_title(f"ACW-0 {task}: {down:.2f}:{up:.2f}") cbar_ax = fig.add_axes([0.92, 0.125, 0.02, 0.755]) cbar = fig.colorbar(pp, cax=cbar_ax, ticks=ticks, orientation="vertical") savefig(fig, "isc", low=True)
def single(): scaler = StandardScaler() df = pd.merge( acw.gen_long_data(tpt) .normalize(columns="metric") .add_net_meta(tpt.net_hierarchy(HierarchyName.RESTRICTED_PERIPHERY_CORE)) .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index() .rename(columns={"metric": "acw"}), acz.gen_long_data(tpt) .normalize(columns="metric") .add_net_meta(tpt.net_hierarchy(HierarchyName.RESTRICTED_PERIPHERY_CORE)) .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index() .rename(columns={"metric": "acz"}), on=["task", "subject", "region", "net_meta"], sort=False).and_filter(NOTnet_meta="M") X = df.iloc[:, -2:].values y = df.net_meta.map({"C": 0, "P": 1}).values X = scaler.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0) logreg = LogisticRegression() logreg.fit(X_train, y_train) y_pred = logreg.predict(X_test) cnf_matrix = metrics.confusion_matrix(y_test, y_pred) print(cnf_matrix) class_names = ["Core", "Periphery"] fig, ax = plt.subplots(1, 1, figsize=(5, 5)) tick_marks = np.arange(len(class_names)) ax.set_xticks(tick_marks, class_names) ax.set_yticks(tick_marks, class_names) sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="YlGnBu", fmt='g', ax=ax) ax.xaxis.set_label_position("top") ax.set(title="Confusion matrix", xlabel="Predicted label", ylabel="Actual label") savefig(fig, "ml4.conf", low=True) y_pred_proba = logreg.predict_proba(X_test)[::, 1] fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba) auc = metrics.roc_auc_score(y_test, y_pred_proba) fig, ax = plt.subplots(1, 1, figsize=(5, 5)) ax.plot(fpr, tpr, label="data 1, auc=" + str(auc)) ax.legend(loc=4) savefig(fig, "ml4.roc", low=True) print("Accuracy:", metrics.accuracy_score(y_test, y_pred)) print("Precision:", metrics.precision_score(y_test, y_pred)) print("Recall:", metrics.recall_score(y_test, y_pred))
def feature_selection(): df = pd.merge( acw.gen_long_data(tpt_sh).normalize(columns="metric").add_net_meta( tpt_sh.net_hierarchy(HierarchyName.PERIPHERY_CORE)).groupby([ "task", "subject", "region", "net_meta" ]).mean().reset_index().rename(columns={"metric": "acw"}), acz.gen_long_data(tpt_sh).normalize(columns="metric").add_net_meta( tpt_sh.net_hierarchy(HierarchyName.PERIPHERY_CORE)).groupby([ "task", "subject", "region", "net_meta" ]).mean().reset_index().rename(columns={"metric": "acz"}), on=["task", "subject", "region", "net_meta"], sort=False) x = df.iloc[:, -2:].values y = df.net_meta.map({"C": 0, "P": 1}).values model = SelectKBest(mutual_info_classif, k=1).fit(x, y) print(f"ACW-50: score = {model.scores_[0]}\n" f"ACW-0: score = {model.scores_[1]}")
def regression(): df = pd.merge( normalize(add_net_meta(normalize(acw.gen_long_data(tpt_name), columns="metric"), get_net("pmc", tpt_name)) \ .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index().rename( columns={"metric": "acw"}), "acw"), normalize(add_net_meta(normalize(acz.gen_long_data(tpt_name), columns="metric"), get_net("pmc", tpt_name)) \ .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index().rename( columns={"metric": "acz"}), "acz"), on=["task", "subject", "region", "net_meta"], sort=False) df = and_filter(df, NOTnet_meta="M") X = df.iloc[:, -2:].values y = df.net_meta.map({"C": 0, "P": 1}).values X = sm.add_constant(X) model = sm.Logit(y, X) result = model.fit() print(result.summary()) mfx = result.get_margeff() print(mfx.summary())
def kfold(): scaler = StandardScaler() random_state = 10 K = 2 df = pd.merge( acw.gen_long_data(tpt) .normalize(columns="metric") .add_net_meta(tpt.net_hierarchy(HierarchyName.RESTRICTED_PERIPHERY_CORE)) .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index() .rename(columns={"metric": "acw"}), acz.gen_long_data(tpt) .normalize(columns="metric") .add_net_meta(tpt.net_hierarchy(HierarchyName.RESTRICTED_PERIPHERY_CORE)) .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index() .rename(columns={"metric": "acz"}), on=["task", "subject", "region", "net_meta"], sort=False).and_filter(NOTnet_meta="M") Xraw = df.iloc[:, -2:].values y = df.net_meta.map({"C": 0, "P": 1}).values logreg = LogisticRegression() svc = svm.SVC(probability=True) output = {} lbl = "svm_both" print(lbl) X = scaler.fit_transform(Xraw) output[lbl] = do_kfold(lbl, svc, X, y, K, random_state) lbl = "svm_acw" print(lbl) X = scaler.fit_transform(Xraw[:, 0].reshape(-1, 1)) output[lbl] = do_kfold(lbl, svc, X, y, K, random_state) lbl = "svm_acz" print(lbl) X = scaler.fit_transform(Xraw[:, 1].reshape(-1, 1)) output[lbl] = do_kfold(lbl, svc, X, y, K, random_state) np.save("svm.npy", output)
def scale_relation(): sns.set(style="whitegrid", font_scale=1) tpt = tpt_cole df = pd.merge( acw.gen_long_data(tpt).groupby(["task", "subject", "region"]).mean().reset_index().normalize("metric"), acz.gen_long_data(tpt).groupby(["task", "subject", "region"]).mean().reset_index().normalize("metric"), on=["task", "subject", "region"] ) df1 = df.groupby(["task", "subject"]).mean().reset_index() df2 = df.groupby(["task", "region"]).mean().reset_index() # noinspection PyTypeChecker fig, axs = plt.subplots(1, 3, figsize=(18, 5), sharey=True, sharex=True) ax = axs[0] sns.kdeplot(df.metric_x, ax=ax, bw_adjust=1.5, clip=(0, None), label="ACW-50", fill=True, color='#2B72C3') sns.kdeplot(df.metric_y, ax=ax, clip=(0, None), label="ACW-0", fill=True, color='#F0744E') ax.legend() ax.set(xlabel="No label", ylabel="Probability", yticklabels=[]) txt1 = ax.text(-0.05, 0.02, "0", transform=ax.transAxes, va='center', ha='center') txt2 = ax.text(-0.05, 0.98, "1", transform=ax.transAxes, va='center', ha='center') ax.grid(False) ax = axs[1] sns.kdeplot(df1.metric_x, ax=ax, bw_adjust=1, clip=(0, None), label="ACW-50", fill=True, color='#2B72C3') sns.kdeplot(df1.metric_y, ax=ax, clip=(0, None), label="ACW-0", fill=True, color='#F0744E') ax.legend() ax.set(xlabel="Averaged over regions", ylabel="Probability") ax.grid(False) ax = axs[2] sns.kdeplot(df2.metric_x, ax=ax, bw_adjust=1, clip=(0, None), label="ACW-50", fill=True, color='#2B72C3') sns.kdeplot(df2.metric_y, ax=ax, clip=(0, None), label="ACW-0", fill=True, color='#F0744E') ax.legend() ax.set(xlabel="Averaged over subjects", ylabel="Probability") ax.grid(False) fig.subplots_adjust(wspace=0.05) savefig(fig, "relation.dist", extra_artists=(txt1, txt2))
def select_best(): df = pd.merge( acw.gen_long_data(tpt) .normalize(columns="metric") .add_net_meta(tpt.net_hierarchy(HierarchyName.RESTRICTED_PERIPHERY_CORE)) .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index() .rename(columns={"metric": "acw"}), acz.gen_long_data(tpt) .normalize(columns="metric") .add_net_meta(tpt.net_hierarchy(HierarchyName.RESTRICTED_PERIPHERY_CORE)) .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index() .rename(columns={"metric": "acz"}), on=["task", "subject", "region", "net_meta"], sort=False).and_filter(NOTnet_meta="M") X = df.iloc[:, -2:].values y = df.net_meta.map({"C": 0, "P": 1}).values functions = [fs.mutual_info_classif, fs.f_classif, fs.chi2] for func in functions: for method in [fs.SelectKBest(func, k=1), fs.SelectPercentile(func), fs.SelectFdr(func), fs.SelectFpr(func), fs.SelectFwe(func)]: method.fit(X, y) print(f'{str(method).split("(")[0]} {func.__name__}: {np.argmax(method.scores_) + 1}')
def fig7(): df = pd.merge( add_net_meta(normalize(acw.gen_long_data(tpt_name), columns="metric"), get_net("pmc", tpt_name)) \ .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index().rename(columns={"metric": "acw"}), add_net_meta(normalize(acz.gen_long_data(tpt_name), columns="metric"), get_net("pmc", tpt_name)) \ .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index().rename(columns={"metric": "acz"}), on=["task", "subject", "region", "net_meta"], sort=False) fig, axs = plt.subplots(1, 2, figsize=(15, 10), sharex=True, sharey="col") ax = axs[0, 0] sns.distplot(df.acw, ax=ax, rug=False, kde=True, hist=True, kde_kws={"bw": 0.02}) ax.set(xlabel=f"Normalized ACW-50") ax.grid(False) ax = axs[1, 0] for meta, label, color in zip(["P", "M", "C"], PMC_labels, PMC_colors): sns.distplot(and_filter(df, net_meta=meta).acw, ax=ax, rug=False, kde=True, hist=False, kde_kws={"bw": 0.02}, label=label, color=color) ax.set(xlabel=f"Normalized ACW-50") ax.grid(False) ax = axs[0, 1] sns.distplot(df.acz, ax=ax, rug=False, kde=True, hist=True, ) ax.grid(False) ax.set(xlabel=f"Normalized ACW-0") ax = axs[1, 1] for meta, label, color in zip(["P", "M", "C"], PMC_labels, PMC_colors): sns.distplot(and_filter(df, net_meta=meta).acz, ax=ax, rug=False, kde=True, hist=False, label=label, color=color) ax.set(xlabel=f"Normalized ACW-0") ax.grid(False) fig.subplots_adjust(wspace=0.1, hspace=0.1) savefig(fig, "fig7.dist.nolabel")
def isc(): df = and_filter(add_net_meta(normalize(acw.gen_long_data(tpt_name), columns="metric"), get_net("pmc", tpt_name)) \ .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index(), NOTnet_meta="M") df1 = and_filter(add_net_meta(normalize(acz.gen_long_data(tpt_name), columns="metric"), get_net("pmc", tpt_name)) \ .groupby(["task", "subject", "region", "net_meta"]).mean().reset_index(), NOTnet_meta="M") correlations = [] for task in task_order(): temp = [] for meta in ["C", "P"]: dft = and_filter(df, task=task, net_meta=meta) subjects = dft.subject.unique() df_corr = np.zeros((len(subjects), len(subjects))) for i in range(len(subjects)): df_corr[i, i] = 1 x = and_filter(dft, subject=subjects[i]).metric for j in range(i + 1, len(subjects)): y = and_filter(dft, subject=subjects[j]).metric df_corr[i, j] = df_corr[j, i] = pearsonr(x, y)[0] temp.append(df_corr) correlations.append(temp) correlations1 = [] for task in task_order(): temp = [] for meta in ["C", "P"]: dft = and_filter(df1, task=task, net_meta=meta) subjects = dft.subject.unique() df_corr = np.zeros((len(subjects), len(subjects))) for i in range(len(subjects)): df_corr[i, i] = 1 x = and_filter(dft, subject=subjects[i]).metric for j in range(i + 1, len(subjects)): y = and_filter(dft, subject=subjects[j]).metric df_corr[i, j] = df_corr[j, i] = pearsonr(x, y)[0] temp.append(df_corr) correlations1.append(temp) min_val, max_val = 0, 1 ticks = np.arange(min_val, max_val + 0.01, 0.1) cmap = cm.get_cmap("jet") fig, axs = plt.subplots(4, 4, figsize=(20, 20)) cbar_ax = fig.add_axes([0.92, 0.125, 0.02, 0.755]) for i, task in enumerate(task_order()): for j, meta in enumerate(["Core", "Periphery"]): ax = axs[j, i] isc = correlations[i][j] xy_ticks = np.linspace(1, len(isc), 10, dtype=np.int) pp = ax.imshow(isc, interpolation="nearest", vmin=min_val, vmax=max_val, cmap=cmap) ax.set(xticks=xy_ticks, yticks=xy_ticks) ax.xaxis.tick_top() down, up = sms.DescrStatsW(isc[np.triu_indices(len(isc), 1)]).tconfint_mean() if j == 0: ax.set_title(task, fontsize=18) else: ax.set_xticks([]) if i == 0: ax.set_ylabel(meta, fontsize=18) else: ax.set_yticks([]) # ax.set_title(f"ACW-50: {down:.2f}:{up:.2f}") for i, task in enumerate(task_order()): for j, meta in enumerate(["Core", "Periphery"]): ax = axs[j + 2, i] isc = correlations1[i][j] xy_ticks = np.linspace(1, len(isc), 10, dtype=np.int) pp = ax.imshow(isc, interpolation="nearest", vmin=min_val, vmax=max_val, cmap=cmap) ax.set(xticks=[], yticks=xy_ticks) ax.xaxis.tick_top() down, up = sms.DescrStatsW(isc[np.triu_indices(len(isc), 1)]).tconfint_mean() if i == 0: ax.set_ylabel(meta, fontsize=18) else: ax.set_yticks([]) # ax.set_title(f"ACW-0: {down:.2f}:{up:.2f}") cbar = fig.colorbar(pp, cax=cbar_ax, ticks=ticks, orientation="vertical") txt1 = fig.text(0.06, 0.67, "ACW-50", rotation=90, fontsize=18) txt2 = fig.text(0.06, 0.27, "ACW-0", rotation=90, fontsize=18) savefig(fig, "isc1", extra_artists=(txt1, txt2))
def fig6(): tasks = task_order(with_rest=False) unique_networks = net_order(tpt_name) palette = make_net_palette(unique_networks) _, mask, _, _, regions, brain_axis = get_template(tpt_name, space) df = acw.gen_long_data(tpt_name).groupby(["task", "subject", "network", "region"]).mean().reset_index() \ .groupby(["subject", "network", "region"]).apply(split, "task", "metric").reset_index().drop("level_3", 1) \ .sort_values("subject") output = np.zeros((len(tasks), mask.size)) for ti, task in enumerate(tasks): shared_subj = acw.find_shared_subjects(tpt_name, ["Rest", task]) for ri, region in enumerate(regions): mask_reg_ind = np.argwhere(mask == ri + 1) df_rgn = and_filter(df, region=region, subject=shared_subj) output[ti, mask_reg_ind] = stats.pearsonr(df_rgn.task_Rest, df_rgn[f"task_{task}"])[0] savemap("fig6.acw", output, brain_axis, cifti.Series(0, 1, output.shape[0])) df_fig = df.groupby(["network", "region"]).mean().reset_index() for task in task_order(True): df_fig[f"task_{task}"] *= 1000 fig, axs = plt.subplots(1, 3, figsize=(16, 5)) for ti, task in enumerate(tasks): ax = axs[ti] sns.scatterplot(data=df_fig, x="task_Rest", y=f"task_{task}", hue="network", hue_order=unique_networks, ax=ax, palette=palette) slope, intercept, r_value, _, _ = stats.linregress(df_fig.task_Rest, df_fig[f"task_{task}"]) sns.lineplot(df_fig.task_Rest, slope * df_fig.task_Rest + intercept, ax=ax, color='black') ax.text(30, 80, f"$r^2$={r_value ** 2:.2f}", ha='center', va='center') ax.set(xlabel=f"Rest ACW-50", ylabel=f"{task} ACW-50", xlim=[25, 60], ylim=[25, 90]) ax.get_legend().remove() # fig.subplots_adjust(wspace=0.22) legend_handles = [] for net, color in zip(unique_networks, palette): legend_handles.append(Line2D([], [], color=color, marker='o', linestyle='None', markersize=5, label=net)) fig.legend(handles=legend_handles, loc=2, ncol=6, handletextpad=0.1, mode="expand", bbox_to_anchor=(0.037, 0.05, 0.785, 1)) txt = fig.text(0.1, 1, "test", color="white") savefig(fig, "fig6.acw.scatter", extra_artists=(txt,)) df = acz.gen_long_data(tpt_name).groupby(["task", "subject", "network", "region"]).mean().reset_index() \ .groupby(["subject", "network", "region"]).apply(split, "task", "metric").reset_index().drop("level_3", 1) \ .sort_values("subject") output = np.zeros((len(tasks), mask.size)) for ti, task in enumerate(tasks): shared_subj = acz.find_shared_subjects(tpt_name, ["Rest", task]) for ri, region in enumerate(regions): mask_reg_ind = np.argwhere(mask == ri + 1) df_rgn = and_filter(df, region=region, subject=shared_subj) output[ti, mask_reg_ind] = stats.pearsonr(df_rgn.task_Rest, df_rgn[f"task_{task}"])[0] savemap("fig6.acz", output, brain_axis, cifti.Series(0, 1, output.shape[0])) df_fig = df.groupby(["network", "region"]).mean().reset_index() for task in task_order(True): df_fig[f"task_{task}"] *= 1000 fig, axs = plt.subplots(1, 3, figsize=(16, 5)) for ti, task in enumerate(tasks): ax = axs[ti] sns.scatterplot(data=df_fig, x="task_Rest", y=f"task_{task}", hue="network", hue_order=unique_networks, ax=ax, palette=palette) slope, intercept, r_value, _, _ = stats.linregress(df_fig.task_Rest, df_fig[f"task_{task}"]) sns.lineplot(df_fig.task_Rest, slope * df_fig.task_Rest + intercept, ax=ax, color='black') ax.text(200, 500, f"$r^2$={r_value ** 2:.2f}", ha='center', va='center') ax.set(xlabel=f"Rest ACW-0", ylabel=f"{task} ACW-0", xlim=[130, 510], ylim=[40, 550]) ax.get_legend().remove() # fig.subplots_adjust(wspace=0.22) legend_handles = [] for net, color in zip(unique_networks, palette): legend_handles.append(Line2D([], [], color=color, marker='o', linestyle='None', markersize=5, label=net)) fig.legend(handles=legend_handles, loc=2, ncol=6, handletextpad=0.1, mode="expand", bbox_to_anchor=(0.045, 0.05, 0.785, 1)) txt = fig.text(0.1, 1, "test", color="white") savefig(fig, "fig6.acz.scatter", extra_artists=(txt,))
from neuro_helper.abstract.map import Space from neuro_helper.map import SchaeferTemplateMap, MarguliesGradientTopo, AntPostTopo from neuro_helper import dataframe import hcp_acf_window as acw import hcp_acf_zero as acz import pandas as pd import seaborn as sns import matplotlib.pyplot as plt tpt = SchaeferTemplateMap(Space.K32_CORTEX, 200, 7)() cp = MarguliesGradientTopo(tpt) ap = AntPostTopo(tpt) df = pd.merge(acw.gen_long_data(tpt).groupby( ["task", "region", "network"]).mean().reset_index().convert_column( metric=lambda x: x * 1000).rename(columns={"metric": "acw"}), acz.gen_long_data(tpt).groupby([ "task", "region", "network" ]).mean().reset_index().convert_column( metric=lambda x: x * 1000).rename(columns={"metric": "acz"}), on=["task", "region", "network"]).normalize(["acw", "acz"]).add_topo(ap, cp) df["ratio"] = df.gradient / df.coord_y ax = sns.catplot(data=df, x="ratio", y="acw", hue="network", col="") ax.set(xlim=[-1, 1]) plt.show()