def extract_clouds(demofile): seg_num = 0 leaf_size = 0.045 keys = {} pclouds = [] for demo_name in demofile: if demo_name != "ar_demo": for seg_name in demofile[demo_name]: if seg_name != 'done': keys[seg_num] = (demo_name, seg_name) pclouds.append(clouds.downsample(np.asarray(demofile[demo_name][seg_name]["cloud_xyz"]), leaf_size)) print demo_name, seg_name seg_num += 1 return keys, pclouds
def track_video_frames_offline(video_dir, T_w_k, init_tfm, ref_image, rope_params = None): video_stamps = np.loadtxt(osp.join(video_dir,demo_names.stamps_name)) rgbs = [] depths = [] color_clouds = [] for (index, stamp) in zip(range(len(video_stamps)), video_stamps): #print index, stamp rgb = cv2.imread(osp.join(video_dir,demo_names.rgb_name%index)) rgb = color_match.match(ref_image, rgb) assert rgb is not None depth = cv2.imread(osp.join(video_dir,demo_names.depth_name%index), 2) assert depth is not None color_cloud = extract_rope_tracking(rgb, depth, T_w_k) color_cloud = clouds.downsample_colored(color_cloud, .01) color_cloud[:,:3] = color_cloud[:,:3].dot(init_tfm[:3,:3].T) + init_tfm[:3,3][None,:] if index == 0: rope_xyz = extract_red(rgb, depth, T_w_k) rope_xyz = clouds.downsample(rope_xyz, .01) rope_xyz = rope_xyz.dot(init_tfm[:3, :3].T) + init_tfm[:3,3][None,:] rope_nodes = rope_initialization.find_path_through_point_cloud(rope_xyz) rope_radius = 0.005 rgbs.append(rgb) depths.append(depth) color_clouds.append(color_cloud) rgbs = np.asarray(rgbs) depths = np.asarray(depths) all_tracked_nodes = cbulletracpy2.py_tracking(rope_nodes, rope_radius, T_w_k, color_clouds, rgbs, depths, 5) for i in range(len(rgbs)): if i % 30 != 0: continue print i fig.clf() ax = fig.gca(projection='3d') ax.set_autoscale_on(False) tracked_nodes = all_tracked_nodes[i, :, :] ax.plot(tracked_nodes[:, 0], tracked_nodes[:,1], tracked_nodes[:,2], 'o') fig.show() raw_input() return all_tracked_nodes
def extract_segs(demofile): seg_num = 0 leaf_size = 0.045 keys = {} segs = [] for demo_name in demofile: if demo_name != "ar_demo": for seg_name in demofile[demo_name]: if seg_name != 'done': keys[seg_num] = (demo_name, seg_name) seg = demofile[demo_name][seg_name] pc = clouds.downsample(np.asarray(seg['cloud_xyz']), leaf_size) segs.append((pc, np.asarray(seg['l']['tfms_s'])[:,0:3,3], np.asarray(seg['r']['tfms_s'])[:,0:3,3])) print demo_name, seg_name seg_num += 1 return keys, segs
def grabcut(rgb, depth, T_w_k): xyz_k = clouds.depth_to_xyz(depth, asus_xtion_pro_f) xyz_w = xyz_k.dot(T_w_k[:3,:3].T) + T_w_k[:3,3][None,None,:] valid_mask = depth > 0 from hd_rapprentice import interactive_roi as ir xys = ir.get_polyline(rgb, "rgb") xy_corner1 = np.clip(np.array(xys).min(axis=0), [0,0], [639,479]) xy_corner2 = np.clip(np.array(xys).max(axis=0), [0,0], [639,479]) polymask = ir.mask_from_poly(xys) #cv2.imshow("mask",mask) xy_tl = np.array([xy_corner1, xy_corner2]).min(axis=0) xy_br = np.array([xy_corner1, xy_corner2]).max(axis=0) xl, yl = xy_tl w, h = xy_br - xy_tl mask = np.zeros((h,w),dtype='uint8') mask[polymask[yl:yl+h, xl:xl+w] > 0] = cv2.GC_PR_FGD print mask.shape #mask[h//4:3*h//4, w//4:3*w//4] = cv2.GC_PR_FGD tmp1 = np.zeros((1, 13 * 5)) tmp2 = np.zeros((1, 13 * 5)) cv2.grabCut(rgb[yl:yl+h, xl:xl+w, :],mask,(0,0,0,0),tmp1, tmp2,10,mode=cv2.GC_INIT_WITH_MASK) mask = mask % 2 #mask = ndi.binary_erosion(mask, utils_images.disk(args.erode)).astype('uint8') contours = cv2.findContours(mask,cv2.RETR_LIST,cv2.CHAIN_APPROX_NONE)[0] cv2.drawContours(rgb[yl:yl+h, xl:xl+w, :],contours,-1,(0,255,0),thickness=2) cv2.imshow('rgb', rgb) print "press enter to continue" cv2.waitKey() zsel = xyz_w[yl:yl+h, xl:xl+w, 2] mask = (mask%2==1) & np.isfinite(zsel)# & (zsel - table_height > -1) mask &= valid_mask[yl:yl+h, xl:xl+w] xyz_sel = xyz_w[yl:yl+h, xl:xl+w,:][mask.astype('bool')] return clouds.downsample(xyz_sel, .01)
def extract_segs(demofile, num_segs=None): seg_num = 0 leaf_size = 0.045 keys = {} segs = [] for demo_name in demofile: if demo_name != "ar_demo": for seg_name in demofile[demo_name]: if seg_name != 'done': keys[seg_num] = (demo_name, seg_name) seg = demofile[demo_name][seg_name] pc = clouds.downsample(np.asarray(seg['cloud_xyz']), leaf_size) pc, params = registration.unit_boxify(pc) ltraj = np.asarray(seg['l']['tfms_s'])[:,0:3,3] ltraj = lerp(np.linspace(0,ltraj.shape[0],traj_n), range(ltraj.shape[0]), ltraj) rtraj = np.asarray(seg['r']['tfms_s'])[:,0:3,3] rtraj = lerp(np.linspace(0,rtraj.shape[0],traj_n), range(rtraj.shape[0]), rtraj) segs.append(((pc, params), ltraj, rtraj)) seg_num += 1 if num_segs is not None and seg_num >= num_segs: return keys, segs return keys, segs
def track_video_frames_online(video_dir, T_w_k, init_tfm, table_plane, ref_image = None, rope_params = None): video_stamps = np.loadtxt(osp.join(video_dir,demo_names.stamps_name)) env = openravepy.Environment() stdev = np.array([]) rgb = cv2.imread(osp.join(video_dir,demo_names.rgb_name%0)) rgb = color_match.match(ref_image, rgb) assert rgb is not None depth = cv2.imread(osp.join(video_dir,demo_names.depth_name%0), 2) assert depth is not None rope_xyz = extract_red(rgb, depth, T_w_k) table_dir = np.array([table_plane[0], table_plane[1], table_plane[2]]) table_dir = table_dir / np.linalg.norm(table_dir) table_dir = init_tfm[:3,:3].dot(table_dir) if np.dot([0,0,1], table_dir) < 0: table_dir = -table_dir table_axis = np.cross(table_dir, [0,0,1]) table_angle = np.arccos(np.dot([0,0,1], table_dir)) table_tfm = openravepy.matrixFromAxisAngle(table_axis, table_angle) table_center_xyz = np.mean(rope_xyz, axis=0) table_tfm[:3,3] = - table_tfm[:3,:3].dot(table_center_xyz) + table_center_xyz init_tfm = table_tfm.dot(init_tfm) tracked_nodes = None for (index, stamp) in zip(range(len(video_stamps)), video_stamps): print index, stamp rgb = cv2.imread(osp.join(video_dir,demo_names.rgb_name%index)) rgb = color_match.match(ref_image, rgb) assert rgb is not None depth = cv2.imread(osp.join(video_dir,demo_names.depth_name%index), 2) assert depth is not None color_cloud = extract_rope_tracking(rgb, depth, T_w_k) # color_cloud is at first in camera frame #print "cloud in camera frame" #print "===================================" #print color_cloud[:, :3] color_cloud = clouds.downsample_colored(color_cloud, .01) color_cloud[:,:3] = color_cloud[:,:3].dot(init_tfm[:3,:3].T) + init_tfm[:3,3][None,:] # color_cloud now is in global frame raw_color_cloud = np.array(color_cloud) ########################################## ### remove the shadow points on the desk ########################################## color_cloud = remove_shadow(color_cloud) if tracked_nodes is not None: color_cloud = rope_shape_filter(tracked_nodes, color_cloud) if index == 0: rope_xyz = extract_red(rgb, depth, T_w_k) rope_xyz = clouds.downsample(rope_xyz, .01) rope_xyz = rope_xyz.dot(init_tfm[:3, :3].T) + init_tfm[:3,3][None,:] rope_nodes = rope_initialization.find_path_through_point_cloud(rope_xyz) # rope_nodes and rope_xyz are in global frame # print rope_nodes table_height = rope_xyz[:,2].min() - .02 table_xml = make_table_xml(translation=[1, 0, table_height], extents=[.85, .55, .01]) env.LoadData(table_xml) bulletsimpy.sim_params.scale = 10 bulletsimpy.sim_params.maxSubSteps = 200 if rope_params is None: rope_params = bulletsimpy.CapsuleRopeParams() rope_params.radius = 0.005 #angStiffness: a rope with a higher angular stiffness seems to have more resistance to bending. #orig self.rope_params.angStiffness = .1 rope_params.angStiffness = .1 #A higher angular damping causes the ropes joints to change angle slower. #This can cause the rope to be dragged at an angle by the arm in the air, instead of falling straight. #orig self.rope_params.angDamping = 1 rope_params.angDamping = 1 #orig self.rope_params.linDamping = .75 #Not sure what linear damping is, but it seems to limit the linear accelertion of centers of masses. rope_params.linDamping = .75 #Angular limit seems to be the minimum angle at which the rope joints can bend. #A higher angular limit increases the minimum radius of curvature of the rope. rope_params.angLimit = .4 #TODO--Find out what the linStopErp is #This could be the tolerance for error when the joint is at or near the joint limit rope_params.linStopErp = .2 bt_env = bulletsimpy.BulletEnvironment(env, []) bt_env.SetGravity([0,0,-0.1]) rope = bulletsimpy.CapsuleRope(bt_env, 'rope', rope_nodes, rope_params) continue #============================================================================== # rope_nodes = rope.GetNodes() # #print "rope nodes in camera frame" # R = init_tfm[:3,:3].T # t = - R.dot(init_tfm[:3,3]) # rope_in_camera_frame = rope_nodes.dot(R.T) + t[None,:] # #print rope_in_camera_frame # uvs = XYZ_to_xy(rope_in_camera_frame[:,0], rope_in_camera_frame[:,1], rope_in_camera_frame[:,2], asus_xtion_pro_f) # uvs = np.vstack(uvs) # #print uvs # #print "uvs" # uvs = uvs.astype(int) # # n_rope_nodes = len(rope_nodes) # # DEPTH_OCCLUSION_DIST = .03 # occ_dist = DEPTH_OCCLUSION_DIST # # vis = np.ones(n_rope_nodes) # # rope_depth_in_camera = np.array(rope_in_camera_frame) # depth_xyz = depth_to_xyz(depth, asus_xtion_pro_f) # # for i in range(n_rope_nodes): # u = uvs[0, i] # v = uvs[1, i] # # neighbor_radius = 10; # v_range = [max(0, v-neighbor_radius), v+neighbor_radius+1] # u_range = [max(0, u-neighbor_radius), u+neighbor_radius+1] # # xyzs = depth_xyz[v_range[0]:v_range[1], u_range[0]:u_range[1]] # # xyzs = np.reshape(xyzs, (xyzs.shape[0]*xyzs.shape[1], xyzs.shape[2])) # dists_to_origin = np.linalg.norm(xyzs, axis=1) # # dists_to_origin = dists_to_origin[np.isfinite(dists_to_origin)] # # #print dists_to_origin # min_dist_to_origin = np.min(dists_to_origin) # # print v, u, min_dist_to_origin, np.linalg.norm(rope_in_camera_frame[i]) # # if min_dist_to_origin + occ_dist > np.linalg.norm(rope_in_camera_frame[i]): # vis[i] = 1 # else: # vis[i] = 0 # # #print "vis result" # #print vis # # rope_depth_in_global = rope_depth_in_camera.dot(init_tfm[:3,:3].T) + init_tfm[:3,3][None,:] #============================================================================== depth_cloud = extract_cloud(depth, T_w_k) depth_cloud[:,:3] = depth_cloud[:,:3].dot(init_tfm[:3,:3].T) + init_tfm[:3,3][None,:] # depth_cloud now is in global frame [tracked_nodes, new_stdev] = bulletsimpy.py_tracking(rope, bt_env, init_tfm, color_cloud, rgb, depth, 5, stdev) stdev = new_stdev #print tracked_nodes #if index % 10 != 0: # continue print index xx, yy = np.mgrid[-1:3, -1:3] zz = np.ones(xx.shape) * table_height table_cloud = [xx, yy, zz] fig.clf() ax = fig.gca(projection='3d') ax.set_autoscale_on(False) print init_tfm[:,3] ax.plot(depth_cloud[:,0], depth_cloud[:,1], depth_cloud[:,2], 'go', alpha=0.1) ax.plot(color_cloud[:,0], color_cloud[:,1], color_cloud[:,2]-0.1, 'go') ax.plot(raw_color_cloud[:,0], raw_color_cloud[:,1], raw_color_cloud[:,2] -0.2, 'ro') #ax.plot(rope_depth_in_global[:,0], rope_depth_in_global[:,1], rope_depth_in_global[:,2], 'ro') ax.plot_surface(table_cloud[0], table_cloud[1], table_cloud[2], color = (0,1,0,0.5)) ax.plot(tracked_nodes[:,0], tracked_nodes[:,1], tracked_nodes[:,2], 'bo') ax.plot([init_tfm[0,3]], [init_tfm[1,3]], [init_tfm[2,3]], 'ro') fig.show() raw_input()
annotation_file = osp.join(demo_dir,"ann.yaml") with open(annotation_file, "r") as fh: annotations = yaml.load(fh) look_stamps = [seg_info['look'] for seg_info in annotations] rgb_imgs, depth_imgs= get_video_frames(rgbd_dir, look_stamps) if demo_name in perturb_demofile.keys(): demo_group = perturb_demofile[demo_name] else: demo_group = perturb_demofile.create_group(demo_name) n_perturb_existed = len(demo_group.keys()) # number of perturbations object_xyz = cloud_proc_func(rgb_imgs[0], depth_imgs[0], np.eye(4)) object_xyz = clouds.downsample(object_xyz, .01) hitch_xyz = None hitch_pos = None if args.has_hitch: hitch_normal = clouds.clouds_plane(object_xyz) hitch_xyz, hitch_pos = hitch_proc_func(rgb_imgs[0], depth_imgs[0], np.eye(4), hitch_normal) hitch_xyz = clouds.downsample(hitch_xyz, .01) xyz = np.r_[object_xyz, hitch_xyz] else: xyz = object_xyz mlab.figure(0) mlab.clf() mlab.points3d(xyz[:,0], xyz[:,1], xyz[:,2], color=(1,0,0), scale_factor=.005)
try: print "1", seg_info.keys() print "2", del_fields if field in seg_info: del seg_info[field] except Exception as e: import IPython IPython.embed() if args.has_hitch: if not hitch_found: hitch_normal = clouds.clouds_plane(cloud) hitch, hitch_pos = hitch_proc_func(rgb_image, np.asarray(seg_info["depth"]), np.eye(4), hitch_normal) hitch_found = True seg_info["full_hitch"] = hitch seg_info["full_object"] = cloud seg_info["hitch"] = clouds.downsample(hitch, .01) seg_info["object"] = clouds.downsample(cloud, .01) seg_info["hitch_pos"] = hitch_pos seg_info["cloud_xyz"] = np.r_[seg_info["hitch"], seg_info["object"]] else: seg_info["full_cloud_xyz"] = cloud seg_info["cloud_xyz"] = clouds.downsample(cloud, .01) seg_info["cloud_proc_func"] = args.cloud_proc_func seg_info["cloud_proc_mod"] = args.cloud_proc_mod seg_info["cloud_proc_code"] = inspect.getsource(cloud_proc_func) if table_cloud is None: table_cloud, table_plane = cloud_proc_mod.extract_table_ransac(rgb_image, np.asarray(seg_info["depth"]), np.eye(4))