def fit_spline_to_tf_stream(strm, new_freq, deg=3):
    """
    Interpolates a stream of transforms using splines, such that 
    there is no "NONE" when sampling the stream at NEW_FREQ frequency.
    
    Returns a stream of transforms.
    """
    tfs, ts = strm.get_data()
    tstart  = strm.get_start_time()
    tmax    = ts[-1]
    
    ndt = 1./new_freq
    new_ts  = np.arange(tstart, tmax+ndt/4., ndt/2.) 

    ## get data in xyzrpy format (6xn) matrix:
    N = len(tfs)
    tf_dat = np.empty((6, N))
    
    tf_dat[0:3,0] = tfs[0][0:3,3]    
    tf_dat[3:6,0] = tfms.euler_from_matrix(tfs[0])
    for i in xrange(1,N):
        now_tf  = tfs[i]
        tf_dat[0:3,i] = now_tf[0:3,3]
        
        prev_rpy  = tf_dat[3:6,i-1]
        now_rpy   = tfms.euler_from_matrix(now_tf)
        now_rpy   = closer_angle(now_rpy, prev_rpy)
        
        tf_dat[3:6,i] = now_rpy

    blueprint("\t fitting spline to data (scipy) ..")
    s = N*.001**2
    (tck, _) = si.splprep(tf_dat, s=s, u=ts, k=deg)

    blueprint("\t evaluating spline at new time-stamps ..")
    interp_xyzrpys = np.r_[si.splev(new_ts, tck)].T

    smooth_tfms = []
    for xyzrpy in interp_xyzrpys:
        tfm = tfms.euler_matrix(*xyzrpy[3:6])
        tfm[0:3,3] = xyzrpy[0:3]
        smooth_tfms.append(tfm)
        
    return streamize(smooth_tfms, new_ts, new_freq, strm.favg, tstart)
示例#2
0
def plan_follow_traj(
    robot,
    manip_name,
    ee_link,
    new_hmats,
    old_traj,
    rope_cloud=None,
    rope_constraint_thresh=0.01,
    end_pose_constraint=False,
):

    n_steps = len(new_hmats)
    assert old_traj.shape[0] == n_steps
    assert old_traj.shape[1] == 7

    arm_inds = robot.GetManipulator(manip_name).GetArmIndices()

    ee_linkname = ee_link.GetName()

    init_traj = old_traj.copy()
    # init_traj[0] = robot.GetDOFValues(arm_inds)
    end_pose = openravepy.poseFromMatrix(new_hmats[-1])

    request = {
        "basic_info": {"n_steps": n_steps, "manip": manip_name, "start_fixed": False},
        "costs": [
            {"type": "joint_vel", "params": {"coeffs": [n_steps / 5.0]}},
            {"type": "collision", "params": {"coeffs": [1], "dist_pen": [0.01]}},
        ],
        "constraints": [],
        "init_info": {"type": "given_traj", "data": [x.tolist() for x in init_traj]},
    }

    request["costs"] += [
        {"type": "collision", "name": "cont_coll", "params": {"coeffs": [50], "dist_pen": [0.05]}},
        {"type": "collision", "name": "col", "params": {"continuous": False, "coeffs": [20], "dist_pen": [0.02]}},
    ]

    # impose that the robot goes to final ee tfm at last ts
    # the constraint works only when the arm is the 'grasp' arm; otherwise only cost is added

    # if end_pose_constraint or not is_fake_motion(new_hmats, 0.1):
    # hack to avoid missing grasp
    if rope_cloud != None:
        closest_point = find_closest_point(rope_cloud, end_pose[4:7])
        dist = np.linalg.norm(end_pose[4:7] - closest_point)
        if dist > rope_constraint_thresh and dist < 0.05:
            end_pose[4:7] = closest_point
            redprint("grasp hack is active, dist = %f" % dist)
        else:
            blueprint("grasp hack is inactive, dist = %f" % dist)
        # raw_input()

    request["constraints"] += [
        {
            "type": "pose",
            "params": {
                "xyz": end_pose[4:7].tolist(),
                "wxyz": end_pose[0:4].tolist(),
                "link": ee_linkname,
                "pos_coeffs": [100, 100, 100],
                "rot_coeffs": [10, 10, 10],
            },
        }
    ]

    poses = [openravepy.poseFromMatrix(hmat) for hmat in new_hmats]

    for (i_step, pose) in enumerate(poses):
        request["costs"].append(
            {
                "type": "pose",
                "params": {
                    "xyz": pose[4:7].tolist(),
                    "wxyz": pose[0:4].tolist(),
                    "link": ee_linkname,
                    "timestep": i_step,
                    "pos_coeffs": [100, 100, 100],
                    "rot_coeffs": [10, 10, 10],
                },
            }
        )

    s = json.dumps(request)
    prob = trajoptpy.ConstructProblem(s, robot.GetEnv())  # create object that stores optimization problem
    result = trajoptpy.OptimizeProblem(prob)  # do optimization
    traj = result.GetTraj()

    saver = openravepy.RobotStateSaver(robot)
    pos_errs = []
    with saver:
        for i_step in xrange(1, n_steps):
            row = traj[i_step]
            robot.SetDOFValues(row, arm_inds)
            tf = ee_link.GetTransform()
            pos = tf[:3, 3]
            pos_err = np.linalg.norm(poses[i_step][4:7] - pos)
            pos_errs.append(pos_err)
    pos_errs = np.array(pos_errs)
    print "planned trajectory for %s. max position error: %.3f. all position errors: %s" % (
        manip_name,
        pos_errs.max(),
        pos_errs,
    )

    return traj