def __init__(self, **kwargs): device, description, excitation_lambda, location = popargs( 'device', 'description', 'excitation_lambda', 'location', kwargs) call_docval_func(super(OptogeneticStimulusSite, self).__init__, kwargs) self.device = device self.description = description self.excitation_lambda = excitation_lambda self.location = location
def __init__(self, **kwargs): data, bits_per_pixel, dimension, format, field_of_view = popargs( 'data', 'bits_per_pixel', 'dimension', 'format', 'field_of_view', kwargs) call_docval_func(super(AImage, self).__init__, kwargs) self.data = data self.bits_per_pixel = bits_per_pixel self.dimension = format self.field_of_view = field_of_view
def add_unit(self, **kwargs): """ Add a unit to the unit table. See :py:meth:`~pynwb.core.DynamicTable.add_row` for more details. """ self.__check_units() call_docval_func(self.units.add_unit, kwargs)
def __init__(self, **kwargs): """Construct a new PoseEstimationSeries representing pose estimates for a particular body part.""" reference_frame, confidence, confidence_definition = popargs( 'reference_frame', 'confidence', 'confidence_definition', kwargs) call_docval_func(super().__init__, kwargs) self.reference_frame = reference_frame self.confidence = confidence self.confidence_definition = confidence_definition
def __init__(self, **kwargs): bits_per_pixel, dimension, format, field_of_view = popargs( 'bits_per_pixel', 'dimension', 'format', 'field_of_view', kwargs) call_docval_func(super().__init__, kwargs) self.bits_per_pixel = bits_per_pixel self.dimension = dimension self.format = format self.field_of_view = field_of_view
def __init__(self, **kwargs): super().__init__( **{ kwargs_item: kwargs[kwargs_item] for kwargs_item in kwargs.copy() if kwargs_item != 'devices' }) call_docval_func(super(NwbImageSeries, self).__init__, kwargs) self.devices = kwargs['devices']
def _func(self, **kwargs): call_docval_func(super(cls, self).__init__, kwargs) for conf in clsconf: attr_name = conf['attr'] add_name = conf['add'] container = popargs(attr_name, kwargs) add = getattr(self, add_name) add(container)
def add_epoch_column(self, **kwargs): """ Add a column to the electrode table. See :py:meth:`~pynwb.core.TimeIntervals.add_column` for more details """ self.__check_epochs() self.epoch_tags.update(kwargs.pop('tags', list())) call_docval_func(self.epochs.add_column, kwargs)
def __init__(self, **kwargs): field_of_view, imaging_plane, pmt_gain, scan_line_rate = popargs( 'field_of_view', 'imaging_plane', 'pmt_gain', 'scan_line_rate', kwargs) call_docval_func(super(TwoPhotonSeries, self).__init__, kwargs) self.field_of_view = field_of_view self.imaging_plane = imaging_plane self.pmt_gain = pmt_gain self.scan_line_rate = scan_line_rate
def __init__(self, **kwargs): call_docval_func(super(MultiContainerInterface, self).__init__, kwargs) if isinstance(self.__clsconf__, dict): attr_name = self.__clsconf__['attr'] self.fields[attr_name] = LabelledDict(attr_name) else: for d in self.__clsconf__: attr_name = d['attr'] self.fields[attr_name] = LabelledDict(attr_name)
def __init__(self, **kwargs): if kwargs.get('description', None) is None: kwargs['description'] = "data on spiking units" call_docval_func(super(Units, self).__init__, kwargs) if 'spike_times' not in self.colnames: self.__has_spike_times = False self.__electrode_table = getargs('electrode_table', kwargs) self.waveform_rate = getargs('waveform_rate', kwargs) self.waveform_unit = getargs('waveform_unit', kwargs) self.resolution = getargs('resolution', kwargs)
def __init__(self, **kwargs): super().__init__( **{ kwargs_item: kwargs[kwargs_item] for kwargs_item in kwargs.copy() if kwargs_item not in ['description', 'content'] }) call_docval_func(super(AssociatedFiles, self).__init__, kwargs) self.description = kwargs['description'] self.content = kwargs['content']
def add_invalid_time_interval(self, **kwargs): """ Add a trial to the trial table. See :py:meth:`~hdmf.common.DynamicTable.add_row` for more details. Required fields are *start_time*, *stop_time*, and any columns that have been added (through calls to `add_invalid_times_columns`). """ self.__check_invalid_times() call_docval_func(self.invalid_times.add_interval, kwargs)
def __init__(self, **kwargs): imaging_plane, reference_images = popargs('imaging_plane', 'reference_images', kwargs) if kwargs.get('name') is None: kwargs['name'] = imaging_plane.name columns, colnames = getargs('columns', 'colnames', kwargs) call_docval_func(super(PlaneSegmentation, self).__init__, kwargs) self.imaging_plane = imaging_plane if isinstance(reference_images, ImageSeries): reference_images = (reference_images,) self.reference_images = reference_images
def __init__(self, **kwargs): call_docval_func(super(ElectrodeGroup, self).__init__, kwargs) description, location, device, position = popargs('description', 'location', 'device', 'position', kwargs) self.description = description self.location = location self.device = device if position and len(position) != 3: raise Exception('ElectrodeGroup position argument must have three elements: x, y, z, but received: %s' % position) self.position = position
def __init__(self, **kwargs): bits_per_pixel, dimension, external_file, starting_frame, format = popargs( 'bits_per_pixel', 'dimension', 'external_file', 'starting_frame', 'format', kwargs) call_docval_func(super(ImageSeries, self).__init__, kwargs) if external_file is None and self.data is None: raise ValueError('must supply either external_file or data to ' + self.name) self.bits_per_pixel = bits_per_pixel self.dimension = dimension self.external_file = external_file self.starting_frame = starting_frame self.format = format
def __init__(self, **kwargs): lower_tier_table = popargs('lower_tier_table', kwargs) # Initialize the DynamicTable call_docval_func(super().__init__, kwargs) if self['next_tier'].target.table is None: if lower_tier_table is not None: self['next_tier'].target.table = lower_tier_table else: raise ValueError( 'lower_tier_table constructor argument required')
def __init__(self, **kwargs): super().__init__(**{kwargs_item: kwargs[kwargs_item] for kwargs_item in kwargs.copy() if kwargs_item != 'system' if kwargs_item != 'amplifier' if kwargs_item != 'adc_circuit' }) call_docval_func(super(DataAcqDevice, self).__init__, kwargs) self.system = kwargs['system'] self.amplifier = kwargs['amplifier'] self.adc_circuit = kwargs['adc_circuit']
def __init__(self, **kwargs): super().__init__( **{ kwargs_item: kwargs[kwargs_item] for kwargs_item in kwargs.copy() if kwargs_item not in ['meters_per_pixel', 'camera_name', 'model', 'lens'] }) call_docval_func(super(CameraDevice, self).__init__, kwargs) self.meters_per_pixel = kwargs['meters_per_pixel'] self.camera_name = kwargs['camera_name'] self.model = kwargs['model'] self.lens = kwargs['lens']
def __init__(self, **kwargs): slice, seal, description, location, resistance, filtering, initial_access_resistance, device = popargs( 'slice', 'seal', 'description', 'location', 'resistance', 'filtering', 'initial_access_resistance', 'device', kwargs) call_docval_func(super().__init__, kwargs) self.slice = slice self.seal = seal self.description = description self.location = location self.resistance = resistance self.filtering = filtering self.initial_access_resistance = initial_access_resistance self.device = device
def __init__(self, **kwargs): seq_table, taxa_table, distances, tree = popargs('seq_table', 'taxa_table', 'distances', 'tree', kwargs) call_docval_func(super().__init__, {'name': 'root'}) self.seq_table = seq_table self.taxa_table = taxa_table self.distances = distances self.tree = tree self._sanity = False self._sanity_features = 5 self.__labels = None self.__n_emb_components = self.taxa_table['embedding'].data.shape[1] if 'embedding' in self.taxa_table else 0 self.label_key = 'id' self.__rev = False
def __init__(self, **kwargs): subject = popargs('subject', kwargs) ontology_objects, ontology_terms = popargs('ontology_objects', 'ontology_terms', kwargs) call_docval_func(super().__init__, kwargs) self.subject = subject if ontology_objects is not None: self.ontology_objects = ontology_objects else: self.ontology_objects = OntologyTable() if ontology_terms is not None: self.ontology_terms = ontology_terms else: self.ontology_terms = OntologyMap()
def add_epoch(self, **kwargs): """ Creates a new Epoch object. Epochs are used to track intervals in an experiment, such as exposure to a certain type of stimuli (an interval where orientation gratings are shown, or of sparse noise) or a different paradigm (a rat exploring an enclosure versus sleeping between explorations) """ self.__check_epochs() if kwargs['tags'] is not None: self.epoch_tags.update(kwargs['tags']) call_docval_func(self.epochs.add_interval, kwargs)
def __init__(self, **kwargs): axis_1_phase_map, axis_1_power_map, axis_2_phase_map, axis_2_power_map, axis_descriptions, \ focal_depth_image, sign_map, vasculature_image = popargs( 'axis_1_phase_map', 'axis_1_power_map', 'axis_2_phase_map', 'axis_2_power_map', 'axis_descriptions', 'focal_depth_image', 'sign_map', 'vasculature_image', kwargs) call_docval_func(super(ImagingRetinotopy, self).__init__, kwargs) self.axis_1_phase_map = axis_1_phase_map self.axis_1_power_map = axis_1_power_map self.axis_2_phase_map = axis_2_phase_map self.axis_2_power_map = axis_2_power_map self.axis_descriptions = axis_descriptions self.focal_depth_image = focal_depth_image self.sign_map = sign_map self.vasculature_image = vasculature_image
def __init__(self, **kwargs): super().__init__(**{kwargs_item: kwargs[kwargs_item] for kwargs_item in kwargs.copy() if kwargs_item != 'targeted_location' if kwargs_item != 'targeted_x' if kwargs_item != 'targeted_y' if kwargs_item != 'targeted_z' if kwargs_item != 'units' }) call_docval_func(super(NwbElectrodeGroup, self).__init__, kwargs) self.targeted_location = kwargs['targeted_location'] self.targeted_x = kwargs['targeted_x'] self.targeted_y = kwargs['targeted_y'] self.targeted_z = kwargs['targeted_z'] self.units = kwargs['units']
def add_electrode(self, **kwargs): """ Add a unit to the unit table. See :py:meth:`~hdmf.common.DynamicTable.add_row` for more details. Required fields are *x*, *y*, *z*, *imp*, *location*, *filtering*, *group* and any columns that have been added (through calls to `add_electrode_columns`). """ self.__check_electrodes() d = _copy.copy( kwargs['data']) if kwargs.get('data') is not None else kwargs if d.get('group_name', None) is None: d['group_name'] = d['group'].name call_docval_func(self.electrodes.add_row, d)
def __init__(self, **kwargs): kwargs['name'] = 'subject' call_docval_func(super(Subject, self).__init__, kwargs) self.age = getargs('age', kwargs) self.description = getargs('description', kwargs) self.genotype = getargs('genotype', kwargs) self.sex = getargs('sex', kwargs) self.species = getargs('species', kwargs) self.subject_id = getargs('subject_id', kwargs) self.weight = getargs('weight', kwargs) date_of_birth = getargs('date_of_birth', kwargs) if date_of_birth and date_of_birth.tzinfo is None: self.date_of_birth = _add_missing_timezone(date_of_birth) else: self.date_of_birth = date_of_birth
def get_manager(**kwargs): ''' Get a BuildManager to use for I/O using the given extensions. If no extensions are provided, return a BuildManager that uses the core namespace ''' type_map = call_docval_func(get_type_map, kwargs) return BuildManager(type_map)
def __init__(self, **kwargs): call_docval_func(super().__init__, kwargs) notes, description = getargs('notes', 'description', kwargs) if notes != '': warn( 'The `notes` argument of ScratchData.__init__ will be deprecated. Use description instead.', PendingDeprecationWarning) if notes != '' and description != '': raise ValueError( 'Cannot provide both notes and description to ScratchData.__init__. The description ' 'argument is recommended.') description = notes if not description: warn( 'ScratchData.description will be required in a future major release of PyNWB.', PendingDeprecationWarning) self.description = description
def __init__(self, **kwargs): columns = kwargs['columns'] if columns is None: taxon_id, rep_idx, taxa_table = popargs('taxon_id', 'rep_idx', 'taxa_table', kwargs) if not isinstance(taxon_id, VectorData): taxon_id = VectorData('taxon_id', 'NCBI accession', data=taxon_id) if not isinstance(rep_idx, VectorData): if taxa_table is None: raise ValueError('taxa_table must be provided if writing') rep_idx = DynamicTableRegion('rep_idx', rep_idx, 'representative taxon', taxa_table) kwargs['columns'] = [taxon_id, rep_idx] call_docval_func(super().__init__, kwargs)