示例#1
0

if __name__ == '__main__':
    np.random.seed(123)

    J = 3
    N = int(1e5)
    K = 2
    ncomps = 3
    true_labels, data = generate_data(n=N, k=K, ncomps=ncomps)
    data = data - data.mean(0)
    data = data/data.std(0)

    # shuffle the data...
    ind = np.arange(N)
    np.random.shuffle(ind)
    all_data = data[ind].copy()
    data = [all_data[(N/J*i):(N/J*(i+1))].copy() for i in range(J)]

    mcmc = HDPNormalMixture(
        data, ncomp=10, parallel=False, verbose=0, gpu=True
    )

    nburn = 20
    niter = 2
    iter_tracker = Callable(nburn, niter)

    mcmc.sample(niter=niter, nburn=nburn, tune_interval=100, callback=iter_tracker)

    print mcmc.mu[-1][-1]
示例#2
0
    J = 3
    N = int(1e5)
    K = 2
    ncomps = 3
    true_labels, data = generate_data(n=N, k=K, ncomps=ncomps)
    data = data - data.mean(0)
    data = data / data.std(0)

    # shuffle the data...
    ind = np.arange(N)
    np.random.shuffle(ind)
    all_data = data[ind].copy()
    data = [all_data[(N / J * i):(N / J * (i + 1))].copy() for i in range(J)]

    mcmc = HDPNormalMixture(data,
                            ncomp=10,
                            parallel=False,
                            verbose=0,
                            gpu=True)

    nburn = 20
    niter = 2
    iter_tracker = Callable(nburn, niter)

    mcmc.sample(niter=niter,
                nburn=nburn,
                tune_interval=100,
                callback=iter_tracker)

    print mcmc.mu[-1][-1]
示例#3
0
from test_help import *

import numpy as np

from hdp import HDPNormalMixture


if __name__ == '__main__':
    np.random.seed(123)

    J = 3
    N = int(1e5)
    K = 2
    ncomps = 3
    true_labels, data = generate_data(n=N, k=K, ncomps=ncomps)
    data = data - data.mean(0)
    data = data/data.std(0)

    # shuffle the data...
    ind = np.arange(N)
    np.random.shuffle(ind)
    all_data = data[ind].copy()
    data = [all_data[(N/J*i):(N/J*(i+1))].copy() for i in range(J)]

    mcmc = HDPNormalMixture(
        data, ncomp=10, parallel=False, verbose=1, gpu=True
    )
    mcmc.sample(niter=2, nburn=8, tune_interval=100)

    print mcmc.mu[-1][-1]
示例#4
0
文件: test_hdp.py 项目: fivejjs/dpmix
#import gpustats as gs

if __name__ == '__main__':

    J = 20
    N = int(1e7)
    K = 2
    ncomps = 3
    true_labels, data = generate_data(n=N, k=K, ncomps=ncomps)
    data = data - data.mean(0)
    data = data/data.std(0)
    #shuffle the data ... 
    ind = np.arange(N); np.random.shuffle(ind);
    all_data = data[ind].copy()
    data = [ all_data[(N/J*i):(N/J*(i+1))].copy() for i in range(J) ]

    #mcmc = HDPNormalMixture(data, ncomp=3, gpu=[0,1,2], parallel=True, verbose=100)
    mcmc = HDPNormalMixture(data, ncomp=100, parallel=True, verbose=1,gpu=[0,1,2,3,4])
    mcmc.sample(2, nburn=1, tune_interval=50)
    #import pdb; pdb.set_trace()
    #imcmc = HDPNormalMixture(mcmc, verbose=100)
    #imcmc.sample(100, nburn=0, ident=True)
    #print imcmc.mu[-1]
    #print imcmc.weights[-1]
    #print imcmc.beta[-1]



    

示例#5
0
import numpy as np

from hdp import HDPNormalMixture

if __name__ == '__main__':
    np.random.seed(123)

    J = 3
    N = int(1e5)
    K = 2
    ncomps = 3
    true_labels, data = generate_data(n=N, k=K, ncomps=ncomps)
    data = data - data.mean(0)
    data = data / data.std(0)

    # shuffle the data...
    ind = np.arange(N)
    np.random.shuffle(ind)
    all_data = data[ind].copy()
    data = [all_data[(N / J * i):(N / J * (i + 1))].copy() for i in range(J)]

    mcmc = HDPNormalMixture(data,
                            ncomp=10,
                            parallel=False,
                            verbose=1,
                            gpu=True)
    mcmc.sample(niter=2, nburn=8, tune_interval=100)

    print mcmc.mu[-1][-1]