import health import matplotlib.pyplot as plt from textblob import TextBlob from wordcloud import WordCloud diseaseSearch = 'disease' list_of_report = health.get_all_reports() combinedDiseases = '' for dis in list_of_report: combinedDiseases += ' ' + dis['disease'] healthBlob = TextBlob(combinedDiseases) diseaseDictionary = dict() for word in healthBlob.words: diseaseDictionary[word.lower()] = healthBlob.word_counts[word.lower()] wordCloud = WordCloud( background_color='white').generate_from_frequencies(diseaseDictionary) plt.title('Diseases in the US') plt.axis('off') for dis in list_of_report: healthBlob = TextBlob(dis['disease']) plt.imshow(wordCloud, interpolation='bilinear')
from course import corgis import health data = health.get_all_reports() data = corgis.data2frame(data) data.to_csv('health.csv',index=False)
return state_index_values def state_list(reports, year): states = [] for report in reports: # makes a list of all states if report["year"] == year: if report["loc"] not in states: states.append(report["loc"]) #print(report["loc"], " pop =", report["population"]) return states #------------------------------------------------------------------------------ reports = health.get_all_reports() states = state_list(reports, 2000) population2000 = annual_pop(reports, 2000) most_populated2000 = most_populated(population2000) pop_state_index2000 = find_pop_index_values(most_populated2000, population2000) most_populated_states2000 = find_states(pop_state_index2000, states) number_sick2000 = number_sick(reports, 2000) most_sick2000 = most_sick(number_sick2000) sick_state_index2000 = find_sick_index_values(most_sick2000, number_sick2000) most_sick_states2000 = find_states(sick_state_index2000, states)