def test_fit_one_hot(self,): x = ht.load_hdf5("heat/datasets/iris.h5", dataset="data") # keys as label array keys = [] for i in range(50): keys.append(0) for i in range(50, 100): keys.append(1) for i in range(100, 150): keys.append(2) labels = ht.array(keys, split=0) # keys as one_hot keys = [] for i in range(50): keys.append([1, 0, 0]) for i in range(50, 100): keys.append([0, 1, 0]) for i in range(100, 150): keys.append([0, 0, 1]) y = ht.array(keys) knn = KNeighborsClassifier(n_neighbors=5) knn.fit(x, y) result = knn.predict(x) self.assertTrue(ht.is_estimator(knn)) self.assertTrue(ht.is_classifier(knn)) self.assertIsInstance(result, ht.DNDarray) self.assertEqual(result.shape, labels.shape)
def test_split_none(self): x = ht.load_hdf5("heat/datasets/iris.h5", dataset="data") # generate keys for the iris.h5 dataset keys = [] for i in range(50): keys.append(0) for i in range(50, 100): keys.append(1) for i in range(100, 150): keys.append(2) y = ht.array(keys) knn = KNeighborsClassifier(n_neighbors=5) knn.fit(x, y) result = knn.predict(x) self.assertTrue(ht.is_estimator(knn)) self.assertTrue(ht.is_classifier(knn)) self.assertIsInstance(result, ht.DNDarray) self.assertEqual(result.shape, y.shape)
def test_split_none(self): X = ht.load_hdf5("heat/datasets/iris.h5", dataset="data") # Generate keys for the iris.h5 dataset keys = [] for i in range(50): keys.append(0) for i in range(50, 100): keys.append(1) for i in range(100, 150): keys.append(2) Y = ht.array(keys) knn = KNN(X, Y, 5) result = knn.predict(X) self.assertTrue(ht.is_estimator(knn)) self.assertTrue(ht.is_classifier(knn)) self.assertIsInstance(result, ht.DNDarray) self.assertEqual(result.shape, Y.shape)
def test_classifier(self): gnb = ht.naive_bayes.GaussianNB() self.assertTrue(ht.is_estimator(gnb)) self.assertTrue(ht.is_classifier(gnb))