示例#1
0
def run_example():
    n = 10**5
    bucket_size = 100
    epsilon = 1

    print("==========>>>>> in KRR")
    krr = kRR(bucket_size=bucket_size, epsilon=epsilon)
    bucket_list, true_hist = example.generate_bucket(n=n,
                                                     bucket_size=bucket_size,
                                                     distribution_name='exp')
    print("this is buckets: ", bucket_list)
    print("this is true hist: ", true_hist)

    private_bucket_list = [krr.user_encode(item) for item in bucket_list]
    estimated_hist = krr.aggregate_histogram(private_bucket_list)
    print("this is estimate_hist", estimated_hist)

    estimated_hist_by_matrix = krr.aggregate_histogram_by_matrix(
        private_bucket_list)
    print("this is estimated_hist2: ", estimated_hist_by_matrix)

    index = range(bucket_size)
    plt.plot(index, true_hist)
    plt.plot(index, estimated_hist)
    plt.legend(['true', 'krr'])
    plt.show()
示例#2
0
def run_example():
    bucket_size = 5
    epsilon = 1

    print("==========>>>>> in RAPPOR")
    rappor = RAPPOR(bucket_size=bucket_size, epsilon=epsilon)
    bucket_list, true_hist = example.generate_bucket(
        n=10000, bucket_size=bucket_size, distribution_name='uniform')
    print("this is buckets: ", bucket_list)
    print("this is true hist: ", true_hist)

    private_bucket_list = [rappor.user_encode(item) for item in bucket_list]
    estimate_hist = rappor.aggregate_histogram(private_bucket_list)
    print("this is estimate_hist", estimate_hist)
示例#3
0
def run_example():
    bucket_size = 5
    epsilon = 1

    print("==========>>>>> in KRR")

    krr = kRR(bucket_size=bucket_size, epsilon=epsilon)
    bucket_list, true_hist = example.generate_bucket(
        n=10000, bucket_size=bucket_size, distribution_name='uniform')
    print("this is buckets: ", bucket_list)
    print("this is true hist: ", true_hist)

    private_bucket_list = [krr.encode_item(item) for item in bucket_list]
    estimate_hist = krr.decode_histogram(private_bucket_list)
    print("this is estimate_hist", estimate_hist)
示例#4
0
def run_example():
    bucket_size = 4
    epsilon = 1
    n = 1000000

    # np.random.seed(10)
    hr = HR(bucket_size=bucket_size, epsilon=epsilon)

    bucket_list, true_hist = example.generate_bucket(
        n=n, bucket_size=bucket_size, distribution_name='uniform')
    print("this is buckets: ", bucket_list)
    print("this is true hist: ", true_hist)

    print("==========>>>>> in KRR")
    private_bucket_list = [hr.encode_item(item) for item in bucket_list]
    print("this is private buckets: ", private_bucket_list)
    estimate_hist = hr.decode_histogram(private_bucket_list)
    print("this is estimate_hist", estimate_hist)
示例#5
0
def run_example():
    epsilon = 1
    n = 10 ** 6
    bucket_size = 1000
    m = 500000

    np.random.seed(10)

    bucket_list, true_hist = example.generate_bucket(n=n, bucket_size=bucket_size, distribution_name='exp')

    true_distribution = true_hist / sum(true_hist)
    print(true_distribution[:10])
    example.draw_distribution(true_distribution)

    SH = SuccinctHistogram(epsilon=epsilon, d=bucket_size, m=m)
    estimated_hist = SH.PROT_FO(users_data=bucket_list)
    estimated_distribution = estimated_hist / sum(estimated_hist)
    example.draw_distribution(estimated_distribution)

    print(estimated_distribution[:10])
示例#6
0
def run_example():
    np.set_printoptions(threshold=40, linewidth=200, edgeitems=5)

    n = 10 ** 5
    bucket_size = 100
    epsilon = 1

    print("==========>>>>> in KRR")
    krr = GeneralizedRandomizedResponse(bucket_size=bucket_size, epsilon=epsilon)
    bucket_list, true_hist = example.generate_bucket(n=n, bucket_size=bucket_size, distribution_name='exp')
    print("this is buckets: ", bucket_list)
    print("this is true hist: ", true_hist)

    private_bucket_list = [krr.user_encode(item) for item in bucket_list]
    estimated_hist = krr.aggregate_histogram(private_bucket_list)
    print("this is estimate_hist", estimated_hist)

    index = range(bucket_size)
    plt.plot(index, true_hist)
    plt.plot(index, estimated_hist)
    plt.legend(['true', 'krr'])
    plt.show()