示例#1
0
def test_shape_functions():
    from pyrticle.tools import \
            CInfinityShapeFunction, \
            PolynomialShapeFunction

    from hedge.mesh import \
            make_uniform_1d_mesh, \
            make_rect_mesh, make_box_mesh

    from hedge.backends import guess_run_context
    rcon = guess_run_context([])

    for r in [0.1, 10]:
        for mesh in [
                make_uniform_1d_mesh(-r, r, 10),
                make_rect_mesh(
                    (-r,-r), (r,r),
                    max_area=(r/10)**2),
                make_box_mesh(
                    (-r,-r,-r), (r,r,r),
                    max_volume=(r/10)**3),
                ]:
            discr = rcon.make_discretization(mesh, order=3)
            for sfunc in [
                    PolynomialShapeFunction(r, discr.dimensions, 2),
                    PolynomialShapeFunction(r, discr.dimensions, 4),
                    CInfinityShapeFunction(r, discr.dimensions),
                    ]:
                num_sfunc = discr.interpolate_volume_function(
                        lambda x, el: sfunc(x))
                int_sfunc = discr.integral(num_sfunc)
                assert abs(int_sfunc-1) < 4e-5
示例#2
0
def test_shape_functions():
    from pyrticle.tools import \
            CInfinityShapeFunction, \
            PolynomialShapeFunction

    from hedge.mesh import \
            make_uniform_1d_mesh, \
            make_rect_mesh, make_box_mesh

    from hedge.backends import guess_run_context
    rcon = guess_run_context([])

    for r in [0.1, 10]:
        for mesh in [
                make_uniform_1d_mesh(-r, r, 10),
                make_rect_mesh((-r, -r), (r, r), max_area=(r / 10)**2),
                make_box_mesh((-r, -r, -r), (r, r, r), max_volume=(r / 10)**3),
        ]:
            discr = rcon.make_discretization(mesh, order=3)
            for sfunc in [
                    PolynomialShapeFunction(r, discr.dimensions, 2),
                    PolynomialShapeFunction(r, discr.dimensions, 4),
                    CInfinityShapeFunction(r, discr.dimensions),
            ]:
                num_sfunc = discr.interpolate_volume_function(
                    lambda x, el: sfunc(x))
                int_sfunc = discr.integral(num_sfunc)
                assert abs(int_sfunc - 1) < 4e-5
def test_mesh_regrid():
    """Test that we are able to interpolate scalars and vectors between two
    grids using a spatial binary tree."""

    from math import pi, sin, cos

    def some_vector(discr):
        x = discr.nodes.T.astype(discr.default_scalar_type)

        from hedge.tools import join_fields

        u1 = discr.interpolate_volume_function(lambda x, el: sin(pi*x[0]))
        u2 = discr.interpolate_volume_function(lambda x, el: sin(pi*x[1]))
        u3 = discr.interpolate_volume_function(lambda x, el: sin(pi*x[0] + pi*x[1]))
        u4 = discr.interpolate_volume_function(lambda x, el: cos(pi*x[0]))

        return join_fields(u1, u2, u3, u4)


    from hedge.backends import guess_run_context
    rcon = guess_run_context()
    from hedge.mesh.generator import make_centered_regular_rect_mesh
    refine = 4

    mesh = make_centered_regular_rect_mesh(
        (-1, -1), (2, 2),n=(7,7), post_refine_factor=refine)
    discr = rcon.make_discretization(mesh, order=6)
    fields_vec = some_vector(discr)
    u = discr.interpolate_volume_function(lambda x, el: sin(x[0]))

    for el_per_axis in range(2,4):
        for order in range(2,4):

            mesh2 = make_centered_regular_rect_mesh((-1, -1), (2, 2),
                            n=(el_per_axis,el_per_axis), post_refine_factor=refine)
            mesh_data2 = rcon.distribute_mesh(mesh2)
            discr2 = rcon.make_discretization(mesh_data2, order=order)

            u2 = discr2.interpolate_volume_function(lambda x, el: sin(x[0]))
            fields_vec2 = some_vector(discr2)

            out = discr.get_regrid_values(
                u, discr2, dtype=None, use_btree=True, thresh=1e-7)
            out_vec = discr.get_regrid_values(
                fields_vec,  discr2, dtype=None, use_btree=True, thresh=1e-7)

            diff = u2 - out
            diff_vec = fields_vec2 - out_vec

            L2_vec=discr2.norm(diff_vec)
            L2_scalar=discr2.norm(diff)

            assert L2_vec < 1e-9
            assert L2_scalar < 1e-9
示例#4
0
def test_with_static_fields():
    from pyrticle.units import SIUnitsWithNaturalConstants

    units = SIUnitsWithNaturalConstants()

    from hedge.discretization.local import TetrahedronDiscretization
    from hedge.mesh.generator import \
            make_box_mesh, \
            make_cylinder_mesh
    from hedge.discretization import Discretization

    # discretization setup ----------------------------------------------------
    radius = 1*units.M
    full_mesh = make_cylinder_mesh(radius=radius, height=2*radius, periodic=True,
            radial_subdivisions=30)

    from hedge.backends import guess_run_context

    pcon = guess_run_context([])

    if pcon.is_head_rank:
        mesh = pcon.distribute_mesh(full_mesh)
    else:
        mesh = pcon.receive_mesh()

    discr = pcon.make_discretization(mesh, order=1)

    # particles setup ---------------------------------------------------------
    def get_setup(case):
        c = units.VACUUM_LIGHT_SPEED()
        from static_field import LarmorScrew, EBParallel
        if case == "screw":
            return LarmorScrew(units,
                    mass=units.EL_MASS, charge=units.EL_CHARGE, c=c,
                    vpar=c*0.8, vperp=c*0.1, bz=1e-3,
                    nparticles=4)
        elif case == "epb":
            return EBParallel(units,
                    mass=units.EL_MASS, charge=units.EL_CHARGE, c=c,
                    ez=1e+5, bz=1e-3, radius=0.5*radius, nparticles=1)
        else:
            raise ValueError, "invalid test case"

    from pyrticle.pusher import \
            MonomialParticlePusher, \
            AverageParticlePusher

    from static_field import run_setup

    for pusher in [MonomialParticlePusher, AverageParticlePusher]:
        for case in ["screw", "epb"]:
            casename = "%s-%s" % (case, pusher.__class__.__name__.lower())
            run_setup(units, casename, get_setup(case), discr, pusher)
示例#5
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context(
        #["cuda"]
    )

    from hedge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    def boundary_tagger(vertices, el, face_nr, all_v):
        return ["inflow"]

    if rcon.is_head_rank:
        from hedge.mesh import make_rect_mesh, \
                               make_centered_regular_rect_mesh
        #mesh = make_rect_mesh((0,0), (10,1), max_area=0.01)
        refine = 1
        mesh = make_centered_regular_rect_mesh(
            (0, 0),
            (10, 1),
            n=(20, 4),
            #periodicity=(True, False),
            post_refine_factor=refine,
            boundary_tagger=boundary_tagger)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        shearflow = SteadyShearFlow()
        fields = shearflow.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = shearflow.properties()

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=2,
                                 gamma=gamma,
                                 mu=mu,
                                 prandtl=prandtl,
                                 spec_gas_const=spec_gas_const,
                                 bc_inflow=shearflow,
                                 bc_outflow=shearflow,
                                 bc_noslip=shearflow,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        # needed to get first estimate of maximum eigenvalue
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-cpu-%d-%d.dat" % (order, refine),
                            "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=0.3,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 10 == 0:
                    #if False:
                    visf = vis.make_file("shearflow-%d-%04d" % (order, step))

                    #true_fields = shearflow.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                            #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                            #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                            #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
                        ],
                        expressions=[
                            #("diff_rho", "rho-true_rho"),
                            #("diff_e", "e-true_e"),
                            #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
                            ("p", "0.4*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = shearflow.volume_interpolant(t, discr)
            l2_error = discr.norm(op.u(fields) - op.u(true_fields))
            eoc_rec.add_data_point(order, l2_error)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
示例#6
0
def main(write_output=True,
        dir_tag=TAG_NONE, neu_tag=TAG_NONE, rad_tag=TAG_ALL,
        flux_type_arg="upwind", dtype=np.float64, debug=[]):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5), max_area=0.008)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype)

    from hedge.models.wave import StrongWaveOperator
    from hedge.mesh import TAG_ALL, TAG_NONE  # noqa

    source_center = np.array([0.1, 0.22])
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    op = StrongWaveOperator(-1, dim,
            source_f=
            sym.CFunction("sin")(source_omega*sym.ScalarParameter("t"))
            * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist)
                / source_width**2),
            dirichlet_tag=dir_tag,
            neumann_tag=neu_tag,
            radiation_tag=rad_tag,
            flux_type=flux_type_arg
            )

    discr = rcon.make_discretization(mesh_data, order=4, debug=debug,
            default_scalar_type=dtype,
            tune_for=op.op_template())

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(dtype=dtype),
            [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # {{{ diagnostics setup

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # }}}

    # {{{ timestep loop

    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=4, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf,
                        [
                            ("u", discr.convert_volume(fields[0], kind="numpy")),
                            ("v", discr.convert_volume(fields[1:], kind="numpy")),
                        ],
                        time=t,
                        step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#7
0
    def __init__(self):
        from pyrticle.units import SIUnitsWithNaturalConstants
        self.units = units = SIUnitsWithNaturalConstants()

        ui = PICCPyUserInterface(units)
        setup = self.setup = ui.gather()

        from pytools.log import LogManager
        import os.path
        self.logmgr = LogManager(os.path.join(setup.output_path, "pic.dat"),
                                 "w")

        from hedge.backends import guess_run_context
        self.rcon = guess_run_context([])

        if self.rcon.is_head_rank:
            mesh = self.rcon.distribute_mesh(setup.mesh)
        else:
            mesh = self.rcon.receive_mesh()

        self.discr = discr = \
                self.rcon.make_discretization(mesh,
                        order=setup.element_order,
                        debug=setup.dg_debug)

        self.logmgr.set_constant("elements_total", len(setup.mesh.elements))
        self.logmgr.set_constant("elements_local", len(mesh.elements))
        self.logmgr.set_constant("element_order", setup.element_order)

        # em operator ---------------------------------------------------------
        maxwell_kwargs = {
            "epsilon": units.EPSILON0,
            "mu": units.MU0,
            "flux_type": setup.maxwell_flux_type,
            "bdry_flux_type": setup.maxwell_bdry_flux_type
        }

        if discr.dimensions == 3:
            from hedge.models.em import MaxwellOperator
            self.maxwell_op = MaxwellOperator(**maxwell_kwargs)
        elif discr.dimensions == 2:
            from hedge.models.em import TEMaxwellOperator
            self.maxwell_op = TEMaxwellOperator(**maxwell_kwargs)
        else:
            raise ValueError, "invalid mesh dimension"

        if setup.chi is not None:
            from pyrticle.hyperbolic import ECleaningMaxwellOperator
            self.maxwell_op = ECleaningMaxwellOperator(
                self.maxwell_op, chi=setup.chi, phi_decay=setup.phi_decay)

            if setup.phi_filter is not None:
                from pyrticle.hyperbolic import PhiFilter
                from hedge.discretization import Filter, ExponentialFilterResponseFunction
                em_filters.append(
                    PhiFilter(
                        maxwell_op,
                        Filter(
                            discr,
                            ExponentialFilterResponseFunction(
                                *setup.phi_filter))))

        # timestepping setup --------------------------------------------------
        goal_dt = self.maxwell_op.estimate_timestep(discr) * setup.dt_scale
        self.nsteps = int(setup.final_time / goal_dt) + 1
        self.dt = setup.final_time / self.nsteps

        self.stepper = setup.timestepper_maker(self.dt)

        # particle setup ------------------------------------------------------
        from pyrticle.cloud import PicMethod, PicState, \
                optimize_shape_bandwidth, \
                guess_shape_bandwidth

        method = self.method = PicMethod(
            discr,
            units,
            setup.depositor,
            setup.pusher,
            dimensions_pos=setup.dimensions_pos,
            dimensions_velocity=setup.dimensions_velocity,
            debug=setup.debug)

        self.state = method.make_state()
        method.add_particles(self.state,
                             setup.distribution.generate_particles(),
                             setup.nparticles)

        self.total_charge = setup.nparticles * setup.distribution.mean()[2][0]
        if isinstance(setup.shape_bandwidth, str):
            if setup.shape_bandwidth == "optimize":
                optimize_shape_bandwidth(
                    method, self.state,
                    setup.distribution.get_rho_interpolant(
                        discr, self.total_charge), setup.shape_exponent)
            elif setup.shape_bandwidth == "guess":
                guess_shape_bandwidth(method, self.state, setup.shape_exponent)
            else:
                raise ValueError, "invalid shape bandwidth setting '%s'" % (
                    setup.shape_bandwidth)
        else:
            from pyrticle._internal import PolynomialShapeFunction
            method.depositor.set_shape_function(
                self.state,
                PolynomialShapeFunction(
                    float(setup.shape_bandwidth),
                    method.mesh_data.dimensions,
                    setup.shape_exponent,
                ))

        # initial condition ---------------------------------------------------
        if "no_ic" in setup.debug:
            self.fields = self.maxwell_op.assemble_eh(discr=discr)
        else:
            from pyrticle.cloud import compute_initial_condition
            self.fields = compute_initial_condition(
                self.rcon,
                discr,
                method,
                self.state,
                maxwell_op=self.maxwell_op,
                potential_bc=setup.potential_bc,
                force_zero=False)

        # rhs calculators -----------------------------------------------------
        from pyrticle.cloud import \
                FieldRhsCalculator, \
                FieldToParticleRhsCalculator, \
                ParticleRhsCalculator, \
                ParticleToFieldRhsCalculator
        self.f_rhs_calculator = FieldRhsCalculator(self.method,
                                                   self.maxwell_op)
        self.p_rhs_calculator = ParticleRhsCalculator(self.method,
                                                      self.maxwell_op)
        self.f2p_rhs_calculator = FieldToParticleRhsCalculator(
            self.method, self.maxwell_op)
        self.p2f_rhs_calculator = ParticleToFieldRhsCalculator(
            self.method, self.maxwell_op)

        # instrumentation setup -----------------------------------------------
        self.add_instrumentation(self.logmgr)
示例#8
0
def main(write_output=True):
    from math import sqrt, pi, exp
    from os.path import join

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    output_dir = "maxwell-2d"
    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)

    from hedge.mesh.generator import make_disk_mesh
    mesh = make_disk_mesh(r=0.5, max_area=1e-3)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class CurrentSource:
        shape = (3, )

        def __call__(self, x, el):
            return [0, 0, exp(-80 * la.norm(x))]

    order = 3
    final_time = 1e-8
    discr = rcon.make_discretization(mesh_data,
                                     order=order,
                                     debug=["cuda_no_plan"])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, join(output_dir, "em-%d" % order))

    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)

    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.models.em import TMMaxwellOperator
    from hedge.data import make_tdep_given, TimeIntervalGivenFunction
    op = TMMaxwellOperator(epsilon,
                           mu,
                           flux_type=1,
                           current=TimeIntervalGivenFunction(
                               make_tdep_given(CurrentSource()),
                               off_time=final_time / 10),
                           absorb_tag=TAG_ALL,
                           pec_tag=TAG_NONE)
    fields = op.assemble_eh(discr=discr)

    from hedge.timestep import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    from time import time
    last_tstep = time()
    t = 0

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = join(output_dir, "maxwell-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
        ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

    # timestep loop -------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=final_time,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h = op.split_eh(fields)
                visf = vis.make_file(
                    join(output_dir, "em-%d-%04d" % (order, step)))
                vis.add_data(visf, [
                    ("e", discr.convert_volume(e, "numpy")),
                    ("h", discr.convert_volume(h, "numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 0.03
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#9
0
def main(write_output=True, dtype=np.float32):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.mesh.generator import make_rect_mesh
    if rcon.is_head_rank:
        h_fac = 1
        mesh = make_rect_mesh(a=(0, 0),
                              b=(1, 1),
                              max_area=h_fac**2 * 1e-4,
                              periodicity=(True, True),
                              subdivisions=(int(70 / h_fac), int(70 / h_fac)))

    from hedge.models.gas_dynamics.lbm import \
            D2Q9LBMMethod, LatticeBoltzmannOperator

    op = LatticeBoltzmannOperator(D2Q9LBMMethod(), lbm_delta_t=0.001, nu=1e-4)

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data,
                                     order=3,
                                     default_scalar_type=dtype,
                                     debug=["cuda_no_plan"])
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(
        dtype=dtype,
        #vector_primitive_factory=discr.get_vector_primitive_factory()
    )

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    from hedge.data import CompiledExpressionData

    def ic_expr(t, x, fields):
        from hedge.optemplate import CFunction
        from pymbolic.primitives import IfPositive
        from pytools.obj_array import make_obj_array

        tanh = CFunction("tanh")
        sin = CFunction("sin")

        rho = 1
        u0 = 0.05
        w = 0.05
        delta = 0.05

        from hedge.optemplate.primitives import make_common_subexpression as cse
        u = cse(
            make_obj_array([
                IfPositive(x[1] - 1 / 2, u0 * tanh(4 * (3 / 4 - x[1]) / w),
                           u0 * tanh(4 * (x[1] - 1 / 4) / w)),
                u0 * delta * sin(2 * np.pi * (x[0] + 1 / 4))
            ]), "u")

        return make_obj_array([
            op.method.f_equilibrium(rho, alpha, u)
            for alpha in range(len(op.method))
        ])

    # timestep loop -----------------------------------------------------------
    stream_rhs = op.bind_rhs(discr)
    collision_update = op.bind(discr, op.collision_update)
    get_rho = op.bind(discr, op.rho)
    get_rho_u = op.bind(discr, op.rho_u)

    f_bar = CompiledExpressionData(ic_expr).volume_interpolant(0, discr)

    from hedge.discretization import ExponentialFilterResponseFunction
    from hedge.optemplate.operators import FilterOperator
    mode_filter = FilterOperator(
            ExponentialFilterResponseFunction(min_amplification=0.9, order=4))\
                    .bind(discr)

    final_time = 1000
    try:
        lbm_dt = op.lbm_delta_t
        dg_dt = op.estimate_timestep(discr, stepper=stepper)
        print dg_dt

        dg_steps_per_lbm_step = int(np.ceil(lbm_dt / dg_dt))
        dg_dt = lbm_dt / dg_steps_per_lbm_step

        lbm_steps = int(final_time // op.lbm_delta_t)
        for step in xrange(lbm_steps):
            t = step * lbm_dt

            if step % 100 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                rho = get_rho(f_bar)
                rho_u = get_rho_u(f_bar)
                vis.add_data(
                    visf,
                    [("fbar%d" % i, discr.convert_volume(f_bar_i, "numpy"))
                     for i, f_bar_i in enumerate(f_bar)] + [
                         ("rho", discr.convert_volume(rho, "numpy")),
                         ("rho_u", discr.convert_volume(rho_u, "numpy")),
                     ],
                    time=t,
                    step=step)
                visf.close()

            print "step=%d, t=%f" % (step, t)

            f_bar = collision_update(f_bar)

            for substep in range(dg_steps_per_lbm_step):
                f_bar = stepper(f_bar, t + substep * dg_dt, dg_dt, stream_rhs)

            #f_bar = mode_filter(f_bar)

    finally:
        if write_output:
            vis.close()

        discr.close()
示例#10
0
def test_efield_vs_gauss_law():
    from hedge.mesh.generator import \
            make_box_mesh, \
            make_cylinder_mesh
    from math import sqrt, pi
    from pytools.arithmetic_container import \
            ArithmeticList, join_fields
    from random import seed
    from pytools.stopwatch import Job

    from pyrticle.units import SIUnitsWithNaturalConstants
    units = SIUnitsWithNaturalConstants()

    seed(0)

    nparticles = 10000
    beam_radius = 2.5 * units.MM
    emittance = 5 * units.MM * units.MRAD
    final_time = 0.1 * units.M / units.VACUUM_LIGHT_SPEED()
    field_dump_interval = 1
    tube_length = 20 * units.MM

    # discretization setup ----------------------------------------------------
    from pyrticle.geometry import make_cylinder_with_fine_core
    mesh = make_cylinder_with_fine_core(
        r=10 * beam_radius,
        inner_r=1 * beam_radius,
        min_z=0,
        max_z=tube_length,
        max_volume_inner=10 * units.MM**3,
        max_volume_outer=100 * units.MM**3,
        radial_subdiv=10,
    )

    from hedge.backends import guess_run_context
    rcon = guess_run_context([])
    discr = rcon.make_discretization(mesh, order=3)

    from hedge.models.em import MaxwellOperator
    max_op = MaxwellOperator(epsilon=units.EPSILON0, mu=units.MU0, flux_type=1)

    from hedge.models.nd_calculus import DivergenceOperator
    div_op = DivergenceOperator(discr.dimensions)

    # particles setup ---------------------------------------------------------
    from pyrticle.cloud import PicMethod
    from pyrticle.deposition.shape import ShapeFunctionDepositor
    from pyrticle.pusher import MonomialParticlePusher

    method = PicMethod(discr, units, ShapeFunctionDepositor(),
                       MonomialParticlePusher(), 3, 3)

    # particle ic ---------------------------------------------------------
    cloud_charge = -1e-9 * units.C
    electrons_per_particle = abs(cloud_charge / nparticles / units.EL_CHARGE)

    el_energy = 10 * units.EL_REST_ENERGY()
    el_lorentz_gamma = el_energy / units.EL_REST_ENERGY()
    beta = (1 - 1 / el_lorentz_gamma**2)**0.5
    gamma = 1 / sqrt(1 - beta**2)

    from pyrticle.distribution import KVZIntervalBeam
    beam = KVZIntervalBeam(units,
                           total_charge=cloud_charge,
                           p_charge=cloud_charge / nparticles,
                           p_mass=electrons_per_particle * units.EL_MASS,
                           radii=2 * [beam_radius],
                           emittances=2 * [5 * units.MM * units.MRAD],
                           z_length=tube_length,
                           z_pos=tube_length / 2,
                           beta=beta)

    state = method.make_state()

    method.add_particles(state, beam.generate_particles(), nparticles)

    # field ic ----------------------------------------------------------------
    from pyrticle.cloud import guess_shape_bandwidth
    guess_shape_bandwidth(method, state, 2)

    from pyrticle.cloud import compute_initial_condition

    from hedge.data import ConstantGivenFunction
    fields = compute_initial_condition(rcon,
                                       discr,
                                       method,
                                       state,
                                       maxwell_op=max_op,
                                       potential_bc=ConstantGivenFunction())

    # check against theory ----------------------------------------------------
    q_per_unit_z = cloud_charge / beam.z_length

    class TheoreticalEField:
        shape = (3, )

        def __call__(self, x, el):
            r = la.norm(x[:2])
            if r >= max(beam.radii):
                xy_unit = x / r
                xy_unit[2] = 0
                return xy_unit * ((q_per_unit_z) /
                                  (2 * pi * r * max_op.epsilon))
            else:
                return numpy.zeros((3, ))

    def theory_indicator(x, el):
        r = la.norm(x[:2])
        if r >= max(beam.radii):
            return 1
        else:
            return 0

    from hedge.tools import join_fields, to_obj_array
    e_theory = to_obj_array(
        discr.interpolate_volume_function(TheoreticalEField()))
    theory_ind = discr.interpolate_volume_function(theory_indicator)

    e_field, h_field = max_op.split_eh(fields)
    restricted_e = join_fields(*[e_i * theory_ind for e_i in e_field])

    def l2_error(field, true):
        return discr.norm(field - true) / discr.norm(true)

    outer_l2 = l2_error(restricted_e, e_theory)
    assert outer_l2 < 0.08

    if False:
        visf = vis.make_file("e_comparison")
        mesh_scalars, mesh_vectors = \
                method.add_to_vis(vis, visf)
        vis.add_data(visf, [
            ("e", restricted_e),
            ("e_theory", e_theory),
        ] + mesh_vectors + mesh_scalars)
        visf.close()
示例#11
0
文件: driver.py 项目: gimac/pyrticle
    def __init__(self):
        from pyrticle.units import SIUnitsWithNaturalConstants
        self.units = units = SIUnitsWithNaturalConstants()

        ui = PICCPyUserInterface(units)
        setup = self.setup = ui.gather()

        from pytools.log import LogManager
        import os.path
        self.logmgr = LogManager(os.path.join(
            setup.output_path, "pic.dat"), "w")

        from hedge.backends import guess_run_context
        self.rcon = guess_run_context([])

        if self.rcon.is_head_rank:
            mesh = self.rcon.distribute_mesh(setup.mesh)
        else:
            mesh = self.rcon.receive_mesh()

        self.discr = discr = \
                self.rcon.make_discretization(mesh, 
                        order=setup.element_order,
                        debug=setup.dg_debug)

        self.logmgr.set_constant("elements_total", len(setup.mesh.elements))
        self.logmgr.set_constant("elements_local", len(mesh.elements))
        self.logmgr.set_constant("element_order", setup.element_order)

        # em operator ---------------------------------------------------------
        maxwell_kwargs = {
                "epsilon": units.EPSILON0, 
                "mu": units.MU0, 
                "flux_type": setup.maxwell_flux_type,
                "bdry_flux_type": setup.maxwell_bdry_flux_type
                }

        if discr.dimensions == 3:
            from hedge.models.em import MaxwellOperator
            self.maxwell_op = MaxwellOperator(**maxwell_kwargs)
        elif discr.dimensions == 2:
            from hedge.models.em import TEMaxwellOperator
            self.maxwell_op = TEMaxwellOperator(**maxwell_kwargs)
        else:
            raise ValueError, "invalid mesh dimension"

        if setup.chi is not None:
            from pyrticle.hyperbolic import ECleaningMaxwellOperator
            self.maxwell_op = ECleaningMaxwellOperator(self.maxwell_op, 
                    chi=setup.chi, 
                    phi_decay=setup.phi_decay)

            if setup.phi_filter is not None:
                from pyrticle.hyperbolic import PhiFilter
                from hedge.discretization import Filter, ExponentialFilterResponseFunction
                em_filters.append(
                        PhiFilter(maxwell_op, Filter(discr,
                            ExponentialFilterResponseFunction(*setup.phi_filter))))

        # timestepping setup --------------------------------------------------
        goal_dt = self.maxwell_op.estimate_timestep(discr) * setup.dt_scale
        self.nsteps = int(setup.final_time/goal_dt)+1
        self.dt = setup.final_time/self.nsteps

        self.stepper = setup.timestepper_maker(self.dt)

        # particle setup ------------------------------------------------------
        from pyrticle.cloud import PicMethod, PicState, \
                optimize_shape_bandwidth, \
                guess_shape_bandwidth

        method = self.method = PicMethod(discr, units, 
                setup.depositor, setup.pusher,
                dimensions_pos=setup.dimensions_pos, 
                dimensions_velocity=setup.dimensions_velocity, 
                debug=setup.debug)

        self.state = method.make_state()
        method.add_particles( 
                self.state,
                setup.distribution.generate_particles(),
                setup.nparticles)

        self.total_charge = setup.nparticles*setup.distribution.mean()[2][0]
        if isinstance(setup.shape_bandwidth, str):
            if setup.shape_bandwidth == "optimize":
                optimize_shape_bandwidth(method, self.state,
                        setup.distribution.get_rho_interpolant(
                            discr, self.total_charge),
                        setup.shape_exponent)
            elif setup.shape_bandwidth == "guess":
                guess_shape_bandwidth(method, self.state, setup.shape_exponent)
            else:
                raise ValueError, "invalid shape bandwidth setting '%s'" % (
                        setup.shape_bandwidth)
        else:
            from pyrticle._internal import PolynomialShapeFunction
            method.depositor.set_shape_function(
                    self.state,
                    PolynomialShapeFunction(
                        float(setup.shape_bandwidth),
                        method.mesh_data.dimensions,
                        setup.shape_exponent,
                        ))

        # initial condition ---------------------------------------------------
        if "no_ic" in setup.debug:
            self.fields = self.maxwell_op.assemble_eh(discr=discr)
        else:
            from pyrticle.cloud import compute_initial_condition
            self.fields = compute_initial_condition(self.rcon, discr, method, self.state,
                    maxwell_op=self.maxwell_op, 
                    potential_bc=setup.potential_bc, 
                    force_zero=False)

        # rhs calculators -----------------------------------------------------
        from pyrticle.cloud import \
                FieldRhsCalculator, \
                FieldToParticleRhsCalculator, \
                ParticleRhsCalculator, \
                ParticleToFieldRhsCalculator
        self.f_rhs_calculator = FieldRhsCalculator(self.method, self.maxwell_op)
        self.p_rhs_calculator = ParticleRhsCalculator(self.method, self.maxwell_op)
        self.f2p_rhs_calculator = FieldToParticleRhsCalculator(self.method, self.maxwell_op)
        self.p2f_rhs_calculator = ParticleToFieldRhsCalculator(self.method, self.maxwell_op)

        # instrumentation setup -----------------------------------------------
        self.add_instrumentation(self.logmgr)
示例#12
0
def main(write_output=True,
         allow_features=None,
         flux_type_arg=1,
         bdry_flux_type_arg=None,
         extra_discr_args={}):
    from hedge.mesh.generator import make_cylinder_mesh, make_box_mesh
    from hedge.tools import EOCRecorder, to_obj_array
    from math import sqrt, pi  # noqa
    from analytic_solutions import (  # noqa
        RealPartAdapter, SplitComplexAdapter, CylindricalFieldAdapter,
        CylindricalCavityMode, RectangularWaveguideMode, RectangularCavityMode)
    from hedge.models.em import MaxwellOperator

    logging.basicConfig(level=logging.DEBUG)

    from hedge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    eoc_rec = EOCRecorder()

    cylindrical = False
    periodic = False

    if cylindrical:
        R = 1
        d = 2
        mode = CylindricalCavityMode(m=1,
                                     n=1,
                                     p=1,
                                     radius=R,
                                     height=d,
                                     epsilon=epsilon,
                                     mu=mu)
        # r_sol = CylindricalFieldAdapter(RealPartAdapter(mode))
        # c_sol = SplitComplexAdapter(CylindricalFieldAdapter(mode))

        if rcon.is_head_rank:
            mesh = make_cylinder_mesh(radius=R, height=d, max_volume=0.01)
    else:
        if periodic:
            mode = RectangularWaveguideMode(epsilon, mu, (3, 2, 1))
            periodicity = (False, False, True)
        else:
            periodicity = None
        mode = RectangularCavityMode(epsilon, mu, (1, 2, 2))

        if rcon.is_head_rank:
            mesh = make_box_mesh(max_volume=0.001, periodicity=periodicity)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4, 5, 6]:
        #for order in [1,2,3,4,5,6]:
        extra_discr_args.setdefault("debug", []).extend(
            ["cuda_no_plan", "cuda_dump_kernels"])

        op = MaxwellOperator(epsilon,
                             mu,
                             flux_type=flux_type_arg,
                             bdry_flux_type=bdry_flux_type_arg)

        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         tune_for=op.op_template(),
                                         **extra_discr_args)

        from hedge.visualization import VtkVisualizer
        if write_output:
            vis = VtkVisualizer(discr, rcon, "em-%d" % order)

        mode.set_time(0)

        def get_true_field():
            return discr.convert_volume(to_obj_array(
                mode(discr).real.astype(discr.default_scalar_type).copy()),
                                        kind=discr.compute_kind)

        fields = get_true_field()

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep.runge_kutta import LSRK4TimeStepper
        stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type, rcon=rcon)
        #from hedge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = Dumka3TimeStepper(3, dtype=discr.default_scalar_type, rcon=rcon)

        # {{{ diagnostics setup

        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "maxwell-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import IntervalTimer
        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        from hedge.log import EMFieldGetter, add_em_quantities
        field_getter = EMFieldGetter(discr, op, lambda: fields)
        add_em_quantities(logmgr, op, field_getter)

        logmgr.add_watches(
            ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

        # }}}

        # {{{ timestep loop

        rhs = op.bind(discr)
        final_time = 0.5e-9

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, fields=fields))

            for step, t, dt in step_it:
                if step % 50 == 0 and write_output:
                    sub_timer = vis_timer.start_sub_timer()
                    e, h = op.split_eh(fields)
                    visf = vis.make_file("em-%d-%04d" % (order, step))
                    vis.add_data(visf, [
                        ("e", discr.convert_volume(e, kind="numpy")),
                        ("h", discr.convert_volume(h, kind="numpy")),
                    ],
                                 time=t,
                                 step=step)
                    visf.close()
                    sub_timer.stop().submit()

                fields = stepper(fields, t, dt, rhs)

            mode.set_time(final_time)

            eoc_rec.add_data_point(order,
                                   discr.norm(fields - get_true_field()))

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

        if rcon.is_head_rank:
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

        # }}}

    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 6
示例#13
0
def main(final_time=1, write_output=False):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from hedge.mesh import make_box_mesh
        mesh = make_box_mesh((0,0,0), (10,10,10), max_volume=0.5)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        discr = rcon.make_discretization(mesh_data, order=order,
                        default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "sinewave-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        sinewave = SineWave()
        fields = sinewave.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = sinewave.properties()

        from hedge.mesh import TAG_ALL
        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=mesh.dimensions, gamma=gamma, mu=mu,
                prandtl=prandtl, spec_gas_const=spec_gas_const,
                bc_inflow=sinewave, bc_outflow=sinewave, bc_noslip=sinewave,
                inflow_tag=TAG_ALL, source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_name = ("euler-sinewave-%(order)d-%(els)d.dat"
                    % {"order":order, "els":len(mesh.elements)})
        else:
            log_name = False
        logmgr = LogManager(log_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=final_time, logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                #if step % 10 == 0:
                if write_output:
                    visf = vis.make_file("sinewave-%d-%04d" % (order, step))

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", op.rho(true_fields)),
                                #("true_e", op.e(true_fields)),
                                #("true_rho_u", op.rho_u(true_fields)),
                                #("true_u", op.u(true_fields)),

                                #("rhs_rho", op.rho(rhs_fields)),
                                #("rhs_e", op.e(rhs_fields)),
                                #("rhs_rho_u", op.rho_u(rhs_fields)),
                                ],
                            #expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                #("p", "0.4*(e- 0.5*(rho_u*u))"),
                                #],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.close()
            discr.close()

        true_fields = sinewave.volume_interpolant(t, discr)
        eoc_rec.add_data_point(order, discr.norm(fields-true_fields))
        print
        print eoc_rec.pretty_print("P.Deg.", "L2 Error")
示例#14
0
def main():
    import logging
    logging.basicConfig(level=logging.INFO)

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        if True:
            mesh = make_squaremesh()
        else:
            from hedge.mesh import make_rect_mesh
            mesh = make_rect_mesh(
                   boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"],
                   max_area=0.1)

        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script(".")

    for order in [3]:
        from gas_dynamics_initials import UniformMachFlow
        square = UniformMachFlow(gaussian_pulse_at=numpy.array([-2, 2]),
                pulse_magnitude=0.003)

        from hedge.models.gas_dynamics import (
                GasDynamicsOperator,
                GammaLawEOS)

        op = GasDynamicsOperator(dimensions=2,
                equation_of_state=GammaLawEOS(square.gamma), mu=square.mu,
                prandtl=square.prandtl, spec_gas_const=square.spec_gas_const,
                bc_inflow=square, bc_outflow=square, bc_noslip=square,
                inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")

        discr = rcon.make_discretization(mesh_data, order=order,
                        debug=["cuda_no_plan",
                            "cuda_dump_kernels",
                            #"dump_dataflow_graph",
                            #"dump_optemplate_stages",
                            #"dump_dataflow_graph",
                            #"dump_op_code"
                            #"cuda_no_plan_el_local"
                            ],
                        default_scalar_type=numpy.float64,
                        tune_for=op.op_template(),
                        quad_min_degrees={
                            "gasdyn_vol": 3*order,
                            "gasdyn_face": 3*order,
                            }
                        )

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        from hedge.timestep.runge_kutta import (
                LSRK4TimeStepper, ODE23TimeStepper, ODE45TimeStepper)
        from hedge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type,
                #vector_primitive_factory=discr.get_vector_primitive_factory())

        stepper = ODE23TimeStepper(dtype=discr.default_scalar_type,
                rtol=1e-6,
                vector_primitive_factory=discr.get_vector_primitive_factory())
        # Dumka works kind of poorly
        #stepper = Dumka3TimeStepper(dtype=discr.default_scalar_type,
                #rtol=1e-7, pol_index=2,
                #vector_primitive_factory=discr.get_vector_primitive_factory())

        #from hedge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = Dumka3TimeStepper(3, rtol=1e-7)

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("cns-square-sp-%d.dat" % order, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import LogQuantity
        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""

            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1", "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        #logmgr.add_quantity(ChangeSinceLastStep())

        add_simulation_quantities(logmgr)
        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # filter setup ------------------------------------------------------------
        from hedge.discretization import Filter, ExponentialFilterResponseFunction
        mode_filter = Filter(discr,
                ExponentialFilterResponseFunction(min_amplification=0.95, order=6))

        # timestep loop -------------------------------------------------------
        fields = square.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=1000,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: next_dt,
                    taken_dt_getter=lambda: taken_dt)

            model_stepper = LSRK4TimeStepper()
            next_dt = op.estimate_timestep(discr,
                    stepper=model_stepper, t=0, 
                    max_eigenvalue=max_eigval[0])

            for step, t, dt in step_it:
                #if (step % 10000 == 0): #and step < 950000) or (step % 500 == 0 and step > 950000):
                #if False:
                if step % 5 == 0:
                    visf = vis.make_file("square-%d-%06d" % (order, step))

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),
                            ],
                            expressions=[
                                ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                if stepper.adaptive:
                    fields, t, taken_dt, next_dt = stepper(fields, t, dt, rhs)
                else:
                    taken_dt = dt
                    fields = stepper(fields, t, dt, rhs)
                    dt = op.estimate_timestep(discr,
                            stepper=model_stepper, t=0,
                            max_eigenvalue=max_eigval[0])

                #fields = mode_filter(fields)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
示例#15
0
    def test_cuda_volume_quadrature():
        from hedge.mesh.generator import make_rect_mesh
        mesh = make_rect_mesh(a=(-1,-1),b=(1,1),max_area=0.08)

        from hedge.backends import guess_run_context
        cpu_rcon = guess_run_context(['jit'])
        gpu_rcon = guess_run_context(['cuda'])

        order = 4
        quad_min_degrees = {"quad": 3*order}

        cpu_discr, gpu_discr = [
                rcon.make_discretization(mesh, order=order,
                    default_scalar_type=numpy.float64, 
                    debug=["cuda_no_plan", "cuda_no_microblock", ],
                    quad_min_degrees=quad_min_degrees
                    )
                for rcon in [cpu_rcon, gpu_rcon]]

        from math import sin, cos
        def f(x, el):
            return sin(x[0])*cos(x[1])

        cpu_field, gpu_field = [
                discr.interpolate_volume_function(f)
                for discr in [cpu_discr, gpu_discr]]

        def make_optemplate():
            from hedge.optemplate.operators import QuadratureGridUpsampler
            from hedge.optemplate import Field, make_stiffness_t

            u = Field("u")
            qu = QuadratureGridUpsampler("quad")(u)

            return make_stiffness_t(2)[0](Field("intercept")(qu))

        saved_vectors = []
        def intercept(x):
            saved_vectors.append(x)
            return x

        for discr in [cpu_discr, gpu_discr]:
            discr.add_function("intercept", intercept)

        opt = make_optemplate()
        cpu_bound, gpu_bound = [discr.compile(make_optemplate())
                for discr in [cpu_discr, gpu_discr]]

        cpu_result = cpu_bound(u=cpu_field)
        gpu_result = gpu_bound(u=gpu_field)

        cpu_ivec, gpu_ivec = saved_vectors
        gpu_ivec_on_host = gpu_ivec.get()[gpu_discr._gpu_volume_embedding("quad")]
        ierr = cpu_ivec-gpu_ivec_on_host
        assert la.norm(ierr) < 5e-15

        gpu_result_on_host = gpu_discr.convert_volume(gpu_result, kind="numpy")
        err = cpu_result-gpu_result_on_host
        assert la.norm(err) < 2e-14

        cpu_discr.close()
        gpu_discr.close()
示例#16
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context(["cuda"])

    if rcon.is_head_rank:
        mesh = make_boxmesh()
        #from hedge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        box = UniformMachFlow(angle_of_attack=0)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                                 gamma=box.gamma,
                                 mu=box.mu,
                                 prandtl=box.prandtl,
                                 spec_gas_const=box.spec_gas_const,
                                 bc_inflow=box,
                                 bc_outflow=box,
                                 bc_noslip=box,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                #"cuda_no_plan",
                #"cuda_dump_kernels",
                #"dump_dataflow_graph",
                #"dump_optemplate_stages",
                #"dump_dataflow_graph",
                #"print_op_code",
                "cuda_no_plan_el_local",
            ],
            default_scalar_type=numpy.float32,
            tune_for=op.op_template())

        from hedge.visualization import SiloVisualizer, VtkVisualizer  # noqa
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = box.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w",
                            rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        from pytools.log import LogQuantity

        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""
            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1",
                                     "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        logmgr.add_quantity(ChangeSinceLastStep())

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=200,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                    #if False:
                    visf = vis.make_file("box-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            # ("rhs_rho", discr.convert_volume(
                            #     op.rho(rhs_fields), kind="numpy")),
                            # ("rhs_e", discr.convert_volume(
                            #     op.e(rhs_fields), kind="numpy")),
                            # ("rhs_rho_u", discr.convert_volume(
                            #     op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
示例#17
0
def main(write_output=True, flux_type_arg="upwind"):
    from hedge.tools import mem_checkpoint
    from math import sin, cos, pi, sqrt
    from math import floor

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    def f(x):
        return sin(pi * x)

    def u_analytic(x, el, t):
        return f((-numpy.dot(v, x) / norm_v + t * norm_v))

    def boundary_tagger(vertices, el, face_nr, all_v):
        if numpy.dot(el.face_normals[face_nr], v) < 0:
            return ["inflow"]
        else:
            return ["outflow"]

    dim = 2

    if dim == 1:
        v = numpy.array([1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(0, 2, 10, periodic=True)
    elif dim == 2:
        v = numpy.array([2, 0])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(boundary_tagger=boundary_tagger)
    elif dim == 3:
        v = numpy.array([0, 0, 1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_cylinder_mesh, make_ball_mesh, make_box_mesh

            mesh = make_cylinder_mesh(max_volume=0.04,
                                      height=2,
                                      boundary_tagger=boundary_tagger,
                                      periodic=False,
                                      radial_subdivisions=32)
    else:
        raise RuntimeError, "bad number of dimensions"

    norm_v = la.norm(v)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    if dim != 1:
        mesh_data = mesh_data.reordered_by("cuthill")

    discr = rcon.make_discretization(mesh_data, order=4)
    vis_discr = discr

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(vis_discr, rcon, "fld")

    # operator setup ----------------------------------------------------------
    from hedge.data import \
            ConstantGivenFunction, \
            TimeConstantGivenFunction, \
            TimeDependentGivenFunction
    from hedge.models.advection import StrongAdvectionOperator, WeakAdvectionOperator
    op = WeakAdvectionOperator(v,
                               inflow_u=TimeDependentGivenFunction(u_analytic),
                               flux_type=flux_type_arg)

    u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, 0))

    # timestep setup ----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "advection.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    from hedge.log import Integral, LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=3,
                                  logmgr=logmgr,
                                  max_dt_getter=lambda t: op.estimate_timestep(
                                      discr, stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            if step % 5 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", discr.convert_volume(u, kind="numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

        true_u = discr.interpolate_volume_function(
            lambda x, el: u_analytic(x, el, t))
        print discr.norm(u - true_u)
        assert discr.norm(u - true_u) < 1e-2
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#18
0
def main(write_output=True):
    from math import sqrt, pi, exp
    from os.path import join

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12 # C**2 / (N m**2)
    mu0 = 4*pi*1e-7 # N/A**2.
    epsilon = 1*epsilon0
    mu = 1*mu0

    output_dir = "maxwell-2d"
    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)
    
    from hedge.mesh.generator import make_disk_mesh
    mesh = make_disk_mesh(r=0.5, max_area=1e-3)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class CurrentSource:
        shape = (3,)

        def __call__(self, x, el):
            return [0,0,exp(-80*la.norm(x))]

    order = 3
    final_time = 1e-8
    discr = rcon.make_discretization(mesh_data, order=order,
            debug=["cuda_no_plan"])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, join(output_dir, "em-%d" % order))

    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)

    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.models.em import TMMaxwellOperator
    from hedge.data import make_tdep_given, TimeIntervalGivenFunction
    op = TMMaxwellOperator(epsilon, mu, flux_type=1,
            current=TimeIntervalGivenFunction(
                make_tdep_given(CurrentSource()), off_time=final_time/10),
            absorb_tag=TAG_ALL, pec_tag=TAG_NONE)
    fields = op.assemble_eh(discr=discr)

    from hedge.timestep import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    from time import time
    last_tstep = time()
    t = 0

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = join(output_dir, "maxwell-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(["step.max", "t_sim.max", 
        ("W_field", "W_el+W_mag"), "t_step.max"])

    # timestep loop -------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=final_time, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h = op.split_eh(fields)
                visf = vis.make_file(join(output_dir, "em-%d-%04d" % (order, step)))
                vis.add_data(visf,
                        [
                            ("e", discr.convert_volume(e, "numpy")),
                            ("h", discr.convert_volume(h, "numpy")),
                            ],
                        time=t, step=step
                        )
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 0.03
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#19
0
def main(write_output=True, flux_type_arg="upwind"):
    from hedge.tools import mem_checkpoint
    from math import sin, cos, pi, sqrt
    from math import floor

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    def f(x):
        return sin(pi*x)

    def u_analytic(x, el, t):
        return f((-numpy.dot(v, x)/norm_v+t*norm_v))

    def boundary_tagger(vertices, el, face_nr, all_v):
        if numpy.dot(el.face_normals[face_nr], v) < 0:
            return ["inflow"]
        else:
            return ["outflow"]

    dim = 2

    if dim == 1:
        v = numpy.array([1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(0, 2, 10, periodic=True)
    elif dim == 2:
        v = numpy.array([2,0])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(boundary_tagger=boundary_tagger)
    elif dim == 3:
        v = numpy.array([0,0,1])
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_cylinder_mesh, make_ball_mesh, make_box_mesh

            mesh = make_cylinder_mesh(max_volume=0.04, height=2, boundary_tagger=boundary_tagger,
                    periodic=False, radial_subdivisions=32)
    else:
        raise RuntimeError, "bad number of dimensions"

    norm_v = la.norm(v)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    if dim != 1:
        mesh_data = mesh_data.reordered_by("cuthill")

    discr = rcon.make_discretization(mesh_data, order=4)
    vis_discr = discr

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(vis_discr, rcon, "fld")

    # operator setup ----------------------------------------------------------
    from hedge.data import \
            ConstantGivenFunction, \
            TimeConstantGivenFunction, \
            TimeDependentGivenFunction
    from hedge.models.advection import StrongAdvectionOperator, WeakAdvectionOperator
    op = WeakAdvectionOperator(v, 
            inflow_u=TimeDependentGivenFunction(u_analytic),
            flux_type=flux_type_arg)

    u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, 0))

    # timestep setup ----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "advection.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    from hedge.log import Integral, LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=3, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            if step % 5 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [ 
                    ("u", discr.convert_volume(u, kind="numpy")), 
                    ], time=t, step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

        true_u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, t))
        print discr.norm(u-true_u)
        assert discr.norm(u-true_u) < 1e-2
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#20
0
def test_efield_vs_gauss_law():
    from hedge.mesh.generator import \
            make_box_mesh, \
            make_cylinder_mesh
    from math import sqrt, pi
    from pytools.arithmetic_container import \
            ArithmeticList, join_fields
    from random import seed
    from pytools.stopwatch import Job

    from pyrticle.units import SIUnitsWithNaturalConstants
    units = SIUnitsWithNaturalConstants()

    seed(0)

    nparticles = 10000
    beam_radius = 2.5 * units.MM
    emittance = 5 * units.MM * units.MRAD
    final_time = 0.1*units.M/units.VACUUM_LIGHT_SPEED()
    field_dump_interval = 1
    tube_length = 20*units.MM

    # discretization setup ----------------------------------------------------
    from pyrticle.geometry import make_cylinder_with_fine_core
    mesh = make_cylinder_with_fine_core(
            r=10*beam_radius, inner_r=1*beam_radius,
            min_z=0, max_z=tube_length,
            max_volume_inner=10*units.MM**3,
            max_volume_outer=100*units.MM**3,
            radial_subdiv=10,
            )

    from hedge.backends import guess_run_context
    rcon = guess_run_context([])
    discr = rcon.make_discretization(mesh, order=3)

    from hedge.models.em import MaxwellOperator
    max_op = MaxwellOperator(
            epsilon=units.EPSILON0,
            mu=units.MU0,
            flux_type=1)

    from hedge.models.nd_calculus import DivergenceOperator
    div_op = DivergenceOperator(discr.dimensions)

    # particles setup ---------------------------------------------------------
    from pyrticle.cloud import PicMethod
    from pyrticle.deposition.shape import ShapeFunctionDepositor
    from pyrticle.pusher import MonomialParticlePusher

    method = PicMethod(discr, units,
            ShapeFunctionDepositor(),
            MonomialParticlePusher(),
            3, 3)

    # particle ic ---------------------------------------------------------
    cloud_charge = -1e-9 * units.C
    electrons_per_particle = abs(cloud_charge/nparticles/units.EL_CHARGE)

    el_energy = 10*units.EL_REST_ENERGY()
    el_lorentz_gamma = el_energy/units.EL_REST_ENERGY()
    beta = (1-1/el_lorentz_gamma**2)**0.5
    gamma = 1/sqrt(1-beta**2)

    from pyrticle.distribution import KVZIntervalBeam
    beam = KVZIntervalBeam(units, total_charge=cloud_charge,
            p_charge=cloud_charge/nparticles,
            p_mass=electrons_per_particle*units.EL_MASS,
            radii=2*[beam_radius],
            emittances=2*[5 * units.MM * units.MRAD],
            z_length=tube_length,
            z_pos=tube_length/2,
            beta=beta)

    state = method.make_state()

    method.add_particles(state, beam.generate_particles(), nparticles)

    # field ic ----------------------------------------------------------------
    from pyrticle.cloud import guess_shape_bandwidth
    guess_shape_bandwidth(method, state, 2)

    from pyrticle.cloud import compute_initial_condition

    from hedge.data import ConstantGivenFunction
    fields = compute_initial_condition(
            rcon,
            discr, method, state, maxwell_op=max_op,
            potential_bc=ConstantGivenFunction())

    # check against theory ----------------------------------------------------
    q_per_unit_z = cloud_charge/beam.z_length
    class TheoreticalEField:
        shape = (3,)

        def __call__(self, x, el):
            r = la.norm(x[:2])
            if r >= max(beam.radii):
                xy_unit = x/r
                xy_unit[2] = 0
                return xy_unit*((q_per_unit_z)
                        /
                        (2*pi*r*max_op.epsilon))
            else:
                return numpy.zeros((3,))

    def theory_indicator(x, el):
        r = la.norm(x[:2])
        if r >= max(beam.radii):
            return 1
        else:
            return 0

    from hedge.tools import join_fields, to_obj_array
    e_theory = to_obj_array(discr.interpolate_volume_function(TheoreticalEField()))
    theory_ind = discr.interpolate_volume_function(theory_indicator)

    e_field, h_field = max_op.split_eh(fields)
    restricted_e = join_fields(*[e_i * theory_ind for e_i in e_field])

    def l2_error(field, true):
        return discr.norm(field-true)/discr.norm(true)

    outer_l2 = l2_error(restricted_e, e_theory)
    assert outer_l2 < 0.08

    if False:
        visf = vis.make_file("e_comparison")
        mesh_scalars, mesh_vectors = \
                method.add_to_vis(vis, visf)
        vis.add_data(visf, [
            ("e", restricted_e),
            ("e_theory", e_theory),
            ]
            + mesh_vectors
            + mesh_scalars
            )
        visf.close()
示例#21
0
def main(final_time=1, write_output=False):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from hedge.mesh import make_box_mesh
        mesh = make_box_mesh((0, 0, 0), (10, 10, 10), max_volume=0.5)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "sinewave-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        sinewave = SineWave()
        fields = sinewave.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = sinewave.properties()

        from hedge.mesh import TAG_ALL
        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=mesh.dimensions,
                                 gamma=gamma,
                                 mu=mu,
                                 prandtl=prandtl,
                                 spec_gas_const=spec_gas_const,
                                 bc_inflow=sinewave,
                                 bc_outflow=sinewave,
                                 bc_noslip=sinewave,
                                 inflow_tag=TAG_ALL,
                                 source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_name = ("euler-sinewave-%(order)d-%(els)d.dat" % {
                "order": order,
                "els": len(mesh.elements)
            })
        else:
            log_name = False
        logmgr = LogManager(log_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                #if step % 10 == 0:
                if write_output:
                    visf = vis.make_file("sinewave-%d-%04d" % (order, step))

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", op.rho(true_fields)),
                            #("true_e", op.e(true_fields)),
                            #("true_rho_u", op.rho_u(true_fields)),
                            #("true_u", op.u(true_fields)),

                            #("rhs_rho", op.rho(rhs_fields)),
                            #("rhs_e", op.e(rhs_fields)),
                            #("rhs_rho_u", op.rho_u(rhs_fields)),
                        ],
                        #expressions=[
                        #("diff_rho", "rho-true_rho"),
                        #("diff_e", "e-true_e"),
                        #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                        #("p", "0.4*(e- 0.5*(rho_u*u))"),
                        #],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.close()
            discr.close()

        true_fields = sinewave.volume_interpolant(t, discr)
        eoc_rec.add_data_point(order, discr.norm(fields - true_fields))
        print
        print eoc_rec.pretty_print("P.Deg.", "L2 Error")
示例#22
0
def main(write_output=True):
    from hedge.timestep import RK4TimeStepper
    from hedge.mesh import make_disk_mesh
    from math import sqrt, pi, exp

    from hedge.backends import guess_run_context, FEAT_CUDA
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12 # C**2 / (N m**2)
    mu0 = 4*pi*1e-7 # N/A**2.
    epsilon = 1*epsilon0
    mu = 1*mu0

    c = 1/sqrt(mu*epsilon)

    cylindrical = False
    periodic = False

    pml_width = 0.5
    #mesh = make_mesh(a=numpy.array((-1,-1,-1)), b=numpy.array((1,1,1)), 
    #mesh = make_mesh(a=numpy.array((-3,-3)), b=numpy.array((3,3)), 
    mesh = make_mesh(a=numpy.array((-1,-1)), b=numpy.array((1,1)), 
    #mesh = make_mesh(a=numpy.array((-2,-2)), b=numpy.array((2,2)), 
            pml_width=pml_width, max_volume=0.01)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class Current:
        def volume_interpolant(self, t, discr):
            from hedge.tools import make_obj_array

            result = discr.volume_zeros(kind="numpy", dtype=numpy.float64)

            omega = 6*c
            if omega*t > 2*pi:
                return make_obj_array([result, result, result])

            x = make_obj_array(discr.nodes.T)
            r = numpy.sqrt(numpy.dot(x, x))

            idx = r<0.3
            result[idx] = (1+numpy.cos(pi*r/0.3))[idx] \
                    *numpy.sin(omega*t)**3

            result = discr.convert_volume(result, kind=discr.compute_kind,
                    dtype=discr.default_scalar_type)
            return make_obj_array([-result, result, result])

    order = 3
    discr = rcon.make_discretization(mesh_data, order=order,
            debug=["cuda_no_plan"])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "em-%d" % order)

    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.data import GivenFunction, TimeHarmonicGivenFunction, TimeIntervalGivenFunction
    from hedge.models.em import MaxwellOperator
    from hedge.models.pml import \
            AbarbanelGottliebPMLMaxwellOperator, \
            AbarbanelGottliebPMLTMMaxwellOperator, \
            AbarbanelGottliebPMLTEMaxwellOperator

    op = AbarbanelGottliebPMLTEMaxwellOperator(epsilon, mu, flux_type=1,
            current=Current(),
            pec_tag=TAG_ALL,
            absorb_tag=TAG_NONE,
            add_decay=True
            )

    fields = op.assemble_ehpq(discr=discr)

    stepper = RK4TimeStepper()

    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "maxwell-%d.dat" % order
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

    from hedge.log import LpNorm
    class FieldIdxGetter:
        def __init__(self, whole_getter, idx):
            self.whole_getter = whole_getter
            self.idx = idx

        def __call__(self):
            return self.whole_getter()[self.idx]

    # timestep loop -------------------------------------------------------

    t = 0
    pml_coeff = op.coefficients_from_width(discr, width=pml_width)
    rhs = op.bind(discr, pml_coeff)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=4/c, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h, p, q = op.split_ehpq(fields)
                visf = vis.make_file("em-%d-%04d" % (order, step))
                #pml_rhs_e, pml_rhs_h, pml_rhs_p, pml_rhs_q = \
                        #op.split_ehpq(rhs(t, fields))
                j = Current().volume_interpolant(t, discr)
                vis.add_data(visf, [ 
                    ("e", discr.convert_volume(e, "numpy")), 
                    ("h", discr.convert_volume(h, "numpy")), 
                    ("p", discr.convert_volume(p, "numpy")), 
                    ("q", discr.convert_volume(q, "numpy")), 
                    ("j", discr.convert_volume(j, "numpy")), 
                    #("pml_rhs_e", pml_rhs_e),
                    #("pml_rhs_h", pml_rhs_h),
                    #("pml_rhs_p", pml_rhs_p),
                    #("pml_rhs_q", pml_rhs_q),
                    #("max_rhs_e", max_rhs_e),
                    #("max_rhs_h", max_rhs_h),
                    #("max_rhs_p", max_rhs_p),
                    #("max_rhs_q", max_rhs_q),
                    ], 
                    time=t, step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        _, _, energies_data = logmgr.get_expr_dataset("W_el+W_mag")
        energies = [value for tick_nbr, value in energies_data]

        assert energies[-1] < max(energies) * 1e-2

    finally:
        logmgr.close()

        if write_output:
            vis.close()
示例#23
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context( ["cuda", "mpi"])

    if rcon.is_head_rank:
        mesh = make_wingmesh()
        #from hedge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        wing = UniformMachFlow(angle_of_attack=0)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                gamma=wing.gamma, mu=wing.mu,
                prandtl=wing.prandtl, spec_gas_const=wing.spec_gas_const,
                bc_inflow=wing, bc_outflow=wing, bc_noslip=wing,
                inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")

        discr = rcon.make_discretization(mesh_data, order=order,
                        debug=["cuda_no_plan",
                            #"cuda_dump_kernels",
                            #"dump_dataflow_graph",
                            #"dump_optemplate_stages",
                            #"dump_dataflow_graph",
                            #"print_op_code"
                            "cuda_no_metis",
                            ],
                        default_scalar_type=numpy.float64,
                        tune_for=op.op_template())

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = wing.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=200,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: 0.6 * op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                #if False:
                    visf = vis.make_file("wing-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    from hedge.discretization import ones_on_boundary
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                                #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                                #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            expressions=[
                                ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                t += dt

        finally:
            vis.close()
            logmgr.save()
            discr.close()
示例#24
0
def main(write_output=True):
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    from math import sqrt, pi, exp

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    c = 1 / sqrt(mu * epsilon)

    pml_width = 0.5
    #mesh = make_mesh(a=np.array((-1,-1,-1)), b=np.array((1,1,1)),
    #mesh = make_mesh(a=np.array((-3,-3)), b=np.array((3,3)),
    mesh = make_mesh(
        a=np.array((-1, -1)),
        b=np.array((1, 1)),
        #mesh = make_mesh(a=np.array((-2,-2)), b=np.array((2,2)),
        pml_width=pml_width,
        max_volume=0.01)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class Current:
        def volume_interpolant(self, t, discr):
            from hedge.tools import make_obj_array

            result = discr.volume_zeros(kind="numpy", dtype=np.float64)

            omega = 6 * c
            if omega * t > 2 * pi:
                return make_obj_array([result, result, result])

            x = make_obj_array(discr.nodes.T)
            r = np.sqrt(np.dot(x, x))

            idx = r < 0.3
            result[idx] = (1+np.cos(pi*r/0.3))[idx] \
                    *np.sin(omega*t)**3

            result = discr.convert_volume(result,
                                          kind=discr.compute_kind,
                                          dtype=discr.default_scalar_type)
            return make_obj_array([-result, result, result])

    order = 3
    discr = rcon.make_discretization(mesh_data,
                                     order=order,
                                     debug=["cuda_no_plan"])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "em-%d" % order)

    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.data import GivenFunction, TimeHarmonicGivenFunction, TimeIntervalGivenFunction
    from hedge.models.em import MaxwellOperator
    from hedge.models.pml import \
            AbarbanelGottliebPMLMaxwellOperator, \
            AbarbanelGottliebPMLTMMaxwellOperator, \
            AbarbanelGottliebPMLTEMaxwellOperator

    op = AbarbanelGottliebPMLTEMaxwellOperator(epsilon,
                                               mu,
                                               flux_type=1,
                                               current=Current(),
                                               pec_tag=TAG_ALL,
                                               absorb_tag=TAG_NONE,
                                               add_decay=True)

    fields = op.assemble_ehpq(discr=discr)

    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "maxwell-%d.dat" % order
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
        ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

    from hedge.log import LpNorm

    class FieldIdxGetter:
        def __init__(self, whole_getter, idx):
            self.whole_getter = whole_getter
            self.idx = idx

        def __call__(self):
            return self.whole_getter()[self.idx]

    # timestep loop -------------------------------------------------------

    t = 0
    pml_coeff = op.coefficients_from_width(discr, width=pml_width)
    rhs = op.bind(discr, pml_coeff)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=4 / c,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h, p, q = op.split_ehpq(fields)
                visf = vis.make_file("em-%d-%04d" % (order, step))
                #pml_rhs_e, pml_rhs_h, pml_rhs_p, pml_rhs_q = \
                #op.split_ehpq(rhs(t, fields))
                j = Current().volume_interpolant(t, discr)
                vis.add_data(
                    visf,
                    [
                        ("e", discr.convert_volume(e, "numpy")),
                        ("h", discr.convert_volume(h, "numpy")),
                        ("p", discr.convert_volume(p, "numpy")),
                        ("q", discr.convert_volume(q, "numpy")),
                        ("j", discr.convert_volume(j, "numpy")),
                        #("pml_rhs_e", pml_rhs_e),
                        #("pml_rhs_h", pml_rhs_h),
                        #("pml_rhs_p", pml_rhs_p),
                        #("pml_rhs_q", pml_rhs_q),
                        #("max_rhs_e", max_rhs_e),
                        #("max_rhs_h", max_rhs_h),
                        #("max_rhs_p", max_rhs_p),
                        #("max_rhs_q", max_rhs_q),
                    ],
                    time=t,
                    step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        _, _, energies_data = logmgr.get_expr_dataset("W_el+W_mag")
        energies = [value for tick_nbr, value in energies_data]

        assert energies[-1] < max(energies) * 1e-2

    finally:
        logmgr.close()

        if write_output:
            vis.close()
示例#25
0
def main(write_output=True):
    from math import sin, cos, pi, exp, sqrt
    from hedge.data import TimeConstantGivenFunction, \
            ConstantGivenFunction

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    def boundary_tagger(fvi, el, fn, all_v):
        if el.face_normals[fn][0] > 0:
            return ["dirichlet"]
        else:
            return ["neumann"]

    if dim == 2:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(r=0.5, boundary_tagger=boundary_tagger)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.001)
    else:
        raise RuntimeError, "bad number of dimensions"

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data,
                                     order=3,
                                     debug=["cuda_no_plan"],
                                     default_scalar_type=numpy.float64)

    if write_output:
        from hedge.visualization import VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "fld")

    def u0(x, el):
        if la.norm(x) < 0.2:
            return 1
        else:
            return 0

    def coeff(x, el):
        if x[0] < 0:
            return 0.25
        else:
            return 1

    def dirichlet_bc(t, x):
        return 0

    def neumann_bc(t, x):
        return 2

    from hedge.models.diffusion import DiffusionOperator
    op = DiffusionOperator(
        discr.dimensions,
        #coeff=coeff,
        dirichlet_tag="dirichlet",
        dirichlet_bc=TimeConstantGivenFunction(ConstantGivenFunction(0)),
        neumann_tag="neumann",
        neumann_bc=TimeConstantGivenFunction(ConstantGivenFunction(1)))
    u = discr.interpolate_volume_function(u0)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "heat.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper, ODE45TimeStepper
    from hedge.timestep.dumka3 import Dumka3TimeStepper
    #stepper = LSRK4TimeStepper()
    stepper = Dumka3TimeStepper(
        3,
        rtol=1e-6,
        rcon=rcon,
        vector_primitive_factory=discr.get_vector_primitive_factory(),
        dtype=discr.default_scalar_type)
    #stepper = ODE45TimeStepper(rtol=1e-6, rcon=rcon,
    #vector_primitive_factory=discr.get_vector_primitive_factory(),
    #dtype=discr.default_scalar_type)
    stepper.add_instrumentation(logmgr)

    rhs = op.bind(discr)
    try:
        next_dt = op.estimate_timestep(discr,
                                       stepper=LSRK4TimeStepper(),
                                       t=0,
                                       fields=u)

        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=0.1,
                                  logmgr=logmgr,
                                  max_dt_getter=lambda t: next_dt,
                                  taken_dt_getter=lambda: taken_dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", discr.convert_volume(u, kind="numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            u, t, taken_dt, next_dt = stepper(u, t, next_dt, rhs)
            #u = stepper(u, t, dt, rhs)

        assert discr.norm(u) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#26
0
def main(write_output=True,
         flux_type_arg="central",
         use_quadrature=True,
         final_time=20):
    from math import sin, cos, pi, sqrt

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    # mesh setup --------------------------------------------------------------
    if rcon.is_head_rank:
        #from hedge.mesh.generator import make_disk_mesh
        #mesh = make_disk_mesh()
        from hedge.mesh.generator import make_rect_mesh
        mesh = make_rect_mesh(a=(-1, -1), b=(1, 1), max_area=0.008)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    # space-time-dependent-velocity-field -------------------------------------
    # simple vortex
    class TimeDependentVField:
        """ `TimeDependentVField` is a callable expecting `(x, t)` representing space and time

        `x` is of the length of the spatial dimension and `t` is the time."""
        shape = (2, )

        def __call__(self, pt, el, t):
            x, y = pt
            # Correction-Factor to make the speed zero on the on the boundary
            #fac = (1-x**2)*(1-y**2)
            fac = 1.
            return numpy.array([-y * fac, x * fac]) * cos(pi * t)

    class VField:
        """ `VField` is a callable expecting `(x)` representing space

        `x` is of the length of the spatial dimension."""
        shape = (2, )

        def __call__(self, pt, el):
            x, y = pt
            # Correction-Factor to make the speed zero on the on the boundary
            #fac = (1-x**2)*(1-y**2)
            fac = 1.
            return numpy.array([-y * fac, x * fac])

    # space-time-dependent State BC (optional)-----------------------------------
    class TimeDependentBc_u:
        """ space and time dependent BC for state u"""
        def __call__(self, pt, el, t):
            x, y = pt
            if t <= 0.5:
                if x > 0:
                    return 1
                else:
                    return 0
            else:
                return 0

    class Bc_u:
        """ Only space dependent BC for state u"""
        def __call__(seld, pt, el):
            x, y = pt
            if x > 0:
                return 1
            else:
                return 0

    # operator setup ----------------------------------------------------------
    # In the operator setup it is possible to switch between a only space
    # dependent velocity field `VField` or a time and space dependent
    # `TimeDependentVField`.
    # For `TimeDependentVField`: advec_v=TimeDependentGivenFunction(VField())
    # For `VField`: advec_v=TimeConstantGivenFunction(GivenFunction(VField()))
    # Same for the Bc_u Function! If you don't define Bc_u then the BC for u = 0.

    from hedge.data import \
            ConstantGivenFunction, \
            TimeConstantGivenFunction, \
            TimeDependentGivenFunction, \
            GivenFunction
    from hedge.models.advection import VariableCoefficientAdvectionOperator
    op = VariableCoefficientAdvectionOperator(
        mesh.dimensions,
        #advec_v=TimeDependentGivenFunction(
        #    TimeDependentVField()),
        advec_v=TimeConstantGivenFunction(GivenFunction(VField())),
        #bc_u_f=TimeDependentGivenFunction(
        #    TimeDependentBc_u()),
        bc_u_f=TimeConstantGivenFunction(GivenFunction(Bc_u())),
        flux_type=flux_type_arg)

    # discretization setup ----------------------------------------------------
    order = 5
    if use_quadrature:
        quad_min_degrees = {"quad": 3 * order}
    else:
        quad_min_degrees = {}

    discr = rcon.make_discretization(
        mesh_data,
        order=order,
        default_scalar_type=numpy.float64,
        debug=["cuda_no_plan"],
        quad_min_degrees=quad_min_degrees,
        tune_for=op.op_template(),
    )
    vis_discr = discr

    # visualization setup -----------------------------------------------------
    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(vis_discr, rcon, "fld")

    # initial condition -------------------------------------------------------
    if True:

        def initial(pt, el):
            # Gauss pulse
            from math import exp
            x = (pt - numpy.array([0.3, 0.5])) * 8
            return exp(-numpy.dot(x, x))
    else:

        def initial(pt, el):
            # Rectangle
            x, y = pt
            if abs(x) < 0.5 and abs(y) < 0.2:
                return 2
            else:
                return 1

    u = discr.interpolate_volume_function(initial)

    # timestep setup ----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(
        vector_primitive_factory=discr.get_vector_primitive_factory())

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # filter setup-------------------------------------------------------------
    from hedge.discretization import ExponentialFilterResponseFunction
    from hedge.optemplate.operators import FilterOperator
    mode_filter = FilterOperator(
            ExponentialFilterResponseFunction(min_amplification=0.9,order=4))\
                    .bind(discr)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "space-dep.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    from hedge.log import Integral, LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # Initialize v for data output:
    v = op.advec_v.volume_interpolant(0, discr)

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=final_time,
                                  logmgr=logmgr,
                                  max_dt_getter=lambda t: op.estimate_timestep(
                                      discr, stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf,
                             [("u", discr.convert_volume(u, kind="numpy")),
                              ("v", discr.convert_volume(v, kind="numpy"))],
                             time=t,
                             step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

            # We're feeding in a discontinuity through the BCs.
            # Quadrature does not help with shock capturing--
            # therefore we do need to filter here, regardless
            # of whether quadrature is enabled.
            u = mode_filter(u)

        assert discr.norm(u) < 10

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#27
0
    final_time = 10

    def u0(self, x):
        return -sin(x + 0.3)


def main(
    write_output=True,
    flux_type_arg="upwind",
    #case = CenteredStationaryTestCase(),
    #case = OffCenterStationaryTestCase(),
    #case = OffCenterMigratingTestCase(),
    case=ExactTestCase(),
):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    order = 3
    if rcon.is_head_rank:
        if True:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(case.a, case.b, 20, periodic=True)
        else:
            from hedge.mesh.generator import make_rect_mesh
            print(pi * 2) / (11 * 5 * 2)
            mesh = make_rect_mesh((-pi, -1), (pi, 1),
                                  periodicity=(True, True),
                                  subdivisions=(11, 5),
                                  max_area=(pi * 2) / (11 * 5 * 2))

    if rcon.is_head_rank:
示例#28
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context(["cuda", "mpi"])

    if rcon.is_head_rank:
        mesh = make_wingmesh()
        #from hedge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        wing = UniformMachFlow(angle_of_attack=0)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                                 gamma=wing.gamma,
                                 mu=wing.mu,
                                 prandtl=wing.prandtl,
                                 spec_gas_const=wing.spec_gas_const,
                                 bc_inflow=wing,
                                 bc_outflow=wing,
                                 bc_noslip=wing,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                "cuda_no_plan",
                #"cuda_dump_kernels",
                #"dump_dataflow_graph",
                #"dump_optemplate_stages",
                #"dump_dataflow_graph",
                #"print_op_code"
                "cuda_no_metis",
            ],
            default_scalar_type=numpy.float64,
            tune_for=op.op_template())

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = wing.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w",
                            rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=200,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: 0.6 * op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                    #if False:
                    visf = vis.make_file("wing-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    from hedge.discretization import ones_on_boundary
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                t += dt

        finally:
            vis.close()
            logmgr.save()
            discr.close()
示例#29
0
def main(write_output=True, flux_type_arg="upwind", 
        #case = CenteredStationaryTestCase(),
        #case = OffCenterStationaryTestCase(),
        #case = OffCenterMigratingTestCase(),
        case = ExactTestCase(),
        ):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    order = 3
    if rcon.is_head_rank:
        if True:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(case.a, case.b, 20, periodic=True)
        else:
            from hedge.mesh.generator import make_rect_mesh
            print (pi*2)/(11*5*2)
            mesh = make_rect_mesh((-pi, -1), (pi, 1),
                    periodicity=(True, True),
                    subdivisions=(11,5),
                    max_area=(pi*2)/(11*5*2)
                    )

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=order,
            quad_min_degrees={"quad": 3*order})

    if write_output:
        from hedge.visualization import VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "fld")

    # operator setup ----------------------------------------------------------
    from hedge.second_order import IPDGSecondDerivative

    from hedge.models.burgers import BurgersOperator
    op = BurgersOperator(mesh.dimensions,
            viscosity_scheme=IPDGSecondDerivative())

    if rcon.is_head_rank:
        print "%d elements" % len(discr.mesh.elements)

    # exact solution ----------------------------------------------------------
    import pymbolic
    var = pymbolic.var

    u = discr.interpolate_volume_function(lambda x, el: case.u0(x[0]))

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "burgers.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l1_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)

    from hedge.timestep.runge_kutta import ODE45TimeStepper, LSRK4TimeStepper
    stepper = ODE45TimeStepper()

    stepper.add_instrumentation(logmgr)

    try:
        from hedge.timestep import times_and_steps
        # for visc=0.01
        #stab_fac = 0.1 # RK4
        #stab_fac = 1.6 # dumka3(3), central
        #stab_fac = 3 # dumka3(4), central

        #stab_fac = 0.01 # RK4
        stab_fac = 0.2 # dumka3(3), central
        #stab_fac = 3 # dumka3(4), central

        dt = stab_fac*op.estimate_timestep(discr,
                stepper=LSRK4TimeStepper(), t=0, fields=u)

        step_it = times_and_steps(
                final_time=case.final_time, logmgr=logmgr, max_dt_getter=lambda t: dt)
        from hedge.optemplate import  InverseVandermondeOperator
        inv_vdm = InverseVandermondeOperator().bind(discr)

        for step, t, dt in step_it:
            if step % 3 == 0 and write_output:
                if hasattr(case, "u_exact"):
                    extra_fields = [
                            ("u_exact",
                                discr.interpolate_volume_function(
                                    lambda x, el: case.u_exact(x[0], t)))]
                else:
                    extra_fields = []

                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", u),
                    ] + extra_fields,
                    time=t,
                    step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

        if isinstance(case, ExactTestCase):
            assert discr.norm(u, 1) < 50

    finally:
        if write_output:
            vis.close()

        logmgr.save()
示例#30
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context(["cuda"])

    if rcon.is_head_rank:
        mesh = make_boxmesh()
        #from hedge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        box = UniformMachFlow(angle_of_attack=0)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                gamma=box.gamma, mu=box.mu,
                prandtl=box.prandtl, spec_gas_const=box.spec_gas_const,
                bc_inflow=box, bc_outflow=box, bc_noslip=box,
                inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")

        discr = rcon.make_discretization(mesh_data, order=order,
                        debug=[
                            #"cuda_no_plan",
                            #"cuda_dump_kernels",
                            #"dump_dataflow_graph",
                            #"dump_optemplate_stages",
                            #"dump_dataflow_graph",
                            #"print_op_code",
                            "cuda_no_plan_el_local",
                            ],
                        default_scalar_type=numpy.float32,
                        tune_for=op.op_template())

        from hedge.visualization import SiloVisualizer, VtkVisualizer  # noqa
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = box.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        from pytools.log import LogQuantity

        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""

            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1", "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        logmgr.add_quantity(ChangeSinceLastStep())

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=200,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                #if False:
                    visf = vis.make_file("box-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(
                                    op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(
                                    op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(
                                    op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(
                                    op.u(fields), kind="numpy")),

                                # ("rhs_rho", discr.convert_volume(
                                #     op.rho(rhs_fields), kind="numpy")),
                                # ("rhs_e", discr.convert_volume(
                                #     op.e(rhs_fields), kind="numpy")),
                                # ("rhs_rho_u", discr.convert_volume(
                                #     op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            expressions=[
                                ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
示例#31
0
def main(write_output=True):
    from hedge.data import GivenFunction, ConstantGivenFunction

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    def boundary_tagger(fvi, el, fn, points):
        from math import atan2, pi
        normal = el.face_normals[fn]
        if -90 / 180 * pi < atan2(normal[1], normal[0]) < 90 / 180 * pi:
            return ["neumann"]
        else:
            return ["dirichlet"]

    if dim == 2:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(r=0.5,
                                  boundary_tagger=boundary_tagger,
                                  max_area=1e-2)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(
                max_volume=0.0001,
                boundary_tagger=lambda fvi, el, fn, points: ["dirichlet"])
    else:
        raise RuntimeError, "bad number of dimensions"

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=5, debug=[])

    def dirichlet_bc(x, el):
        from math import sin
        return sin(10 * x[0])

    def rhs_c(x, el):
        if la.norm(x) < 0.1:
            return 1000
        else:
            return 0

    def my_diff_tensor():
        result = numpy.eye(dim)
        result[0, 0] = 0.1
        return result

    try:
        from hedge.models.poisson import PoissonOperator
        from hedge.second_order import \
                IPDGSecondDerivative, LDGSecondDerivative, \
                StabilizedCentralSecondDerivative
        from hedge.mesh import TAG_NONE, TAG_ALL
        op = PoissonOperator(
            discr.dimensions,
            diffusion_tensor=my_diff_tensor(),

            #dirichlet_tag="dirichlet",
            #neumann_tag="neumann",
            dirichlet_tag=TAG_ALL,
            neumann_tag=TAG_NONE,

            #dirichlet_tag=TAG_ALL,
            #neumann_tag=TAG_NONE,
            dirichlet_bc=GivenFunction(dirichlet_bc),
            neumann_bc=ConstantGivenFunction(-10),
            scheme=StabilizedCentralSecondDerivative(),
            #scheme=LDGSecondDerivative(),
            #scheme=IPDGSecondDerivative(),
        )
        bound_op = op.bind(discr)

        from hedge.iterative import parallel_cg
        u = -parallel_cg(rcon,
                         -bound_op,
                         bound_op.prepare_rhs(
                             discr.interpolate_volume_function(rhs_c)),
                         debug=20,
                         tol=5e-4,
                         dot=discr.nodewise_dot_product,
                         x=discr.volume_zeros())

        if write_output:
            from hedge.visualization import SiloVisualizer, VtkVisualizer
            vis = VtkVisualizer(discr, rcon)
            visf = vis.make_file("fld")
            vis.add_data(visf, [
                ("sol", discr.convert_volume(u, kind="numpy")),
            ])
            visf.close()
    finally:
        discr.close()
示例#32
0
def main(write_output=True):
    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script("..")

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import EOCRecorder
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from hedge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh = make_centered_regular_rect_mesh((0, -5), (10, 5),
                                               n=(9, 9),
                                               post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        from gas_dynamics_initials import Vortex
        flow = Vortex()

        from hedge.models.gas_dynamics import (GasDynamicsOperator,
                                               PolytropeEOS, GammaLawEOS)

        from hedge.mesh import TAG_ALL
        # works equally well for GammaLawEOS
        op = GasDynamicsOperator(dimensions=2,
                                 mu=flow.mu,
                                 prandtl=flow.prandtl,
                                 spec_gas_const=flow.spec_gas_const,
                                 equation_of_state=PolytropeEOS(flow.gamma),
                                 bc_inflow=flow,
                                 bc_outflow=flow,
                                 bc_noslip=flow,
                                 inflow_tag=TAG_ALL,
                                 source=None)

        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64,
                                         quad_min_degrees={
                                             "gasdyn_vol": 3 * order,
                                             "gasdyn_face": 3 * order,
                                         },
                                         tune_for=op.op_template(),
                                         debug=["cuda_no_plan"])

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        fields = flow.volume_interpolant(0, discr)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        # limiter ------------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, flow.gamma, 2, op)

        from hedge.timestep.runge_kutta import SSP3TimeStepper
        #stepper = SSP3TimeStepper(limiter=limiter)
        stepper = SSP3TimeStepper(
            vector_primitive_factory=discr.get_vector_primitive_factory())

        #from hedge.timestep import RK4TimeStepper
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            final_time = flow.final_time
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            print "run until t=%g" % final_time
            for step, t, dt in step_it:
                if step % 10 == 0 and write_output:
                    #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                            #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                            #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                            #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        #expressions=[
                        #("diff_rho", "rho-true_rho"),
                        #("diff_e", "e-true_e"),
                        #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                        #("p", "0.4*(e- 0.5*(rho_u*u))"),
                        #],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                #fields = limiter(fields)

                assert not numpy.isnan(numpy.sum(fields[0]))

            true_fields = flow.volume_interpolant(final_time, discr)
            l2_error = discr.norm(fields - true_fields)
            l2_error_rho = discr.norm(op.rho(fields) - op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields) - op.e(true_fields))
            l2_error_rhou = discr.norm(
                op.rho_u(fields) - op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields) - op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

    # after order loop
    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 6
示例#33
0
文件: wiggly.py 项目: felipeh/hedge
def main(write_output=True, 
        flux_type_arg="upwind", dtype=numpy.float64, debug=[]):
    from pytools.stopwatch import Job
    from math import sin, cos, pi, exp, sqrt

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import generate_gmsh
        mesh = generate_gmsh(GEOMETRY, 2,
                allow_internal_boundaries=True)

        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=4, debug=debug,
            default_scalar_type=dtype)
    from hedge.timestep import RK4TimeStepper
    stepper = RK4TimeStepper(dtype=dtype)

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    def source_u(x, el):
        return exp(-numpy.dot(x, x)*128)

    from hedge.models.wave import StrongWaveOperator
    from hedge.mesh import TAG_ALL, TAG_NONE
    from hedge.data import \
            make_tdep_given, \
            TimeHarmonicGivenFunction, \
            TimeIntervalGivenFunction

    op = StrongWaveOperator(-1, discr.dimensions, 
            source_f=TimeIntervalGivenFunction(
                TimeHarmonicGivenFunction(
                    make_tdep_given(source_u), omega=10),
                0, 1),
            dirichlet_tag="boundary",
            neumann_tag=TAG_NONE,
            radiation_tag=TAG_NONE,
            flux_type=flux_type_arg
            )

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(dtype=dtype),
            [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wiggly.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=4, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf,
                        [
                            ("u", fields[0]),
                            ("v", fields[1:]), 
                        ],
                        time=t,
                        step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#34
0
def main(write_output=True,
         dir_tag=TAG_NONE,
         neu_tag=TAG_NONE,
         rad_tag=TAG_ALL,
         flux_type_arg="upwind"):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-1, -1), b=(1, 1), max_area=0.003)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=4)

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    source_center = np.array([0.7, 0.4])
    source_width = 1 / 16
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import VariableVelocityStrongWaveOperator
    op = VariableVelocityStrongWaveOperator(
        c=sym.If(sym.Comparison(np.dot(sym_x, sym_x), "<", 0.4**2), 1, 0.5),
        dimensions=discr.dimensions,
        source=sym.CFunction("sin")(source_omega * sym.ScalarParameter("t")) *
        sym.CFunction("exp")(
            -np.dot(sym_source_center_dist, sym_source_center_dist) /
            source_width**2),
        dirichlet_tag=dir_tag,
        neumann_tag=neu_tag,
        radiation_tag=rad_tag,
        flux_type=flux_type_arg)

    from hedge.tools import join_fields
    fields = join_fields(
        discr.volume_zeros(),
        [discr.volume_zeros() for i in range(discr.dimensions)])

    # {{{ diagnostics setup

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # }}}

    # {{{ timestep loop

    rhs = op.bind(discr)
    try:
        from hedge.timestep.stability import \
                approximate_rk4_relative_imag_stability_region
        max_dt = (1 / discr.compile(op.max_eigenvalue_expr())() *
                  discr.dt_non_geometric_factor() *
                  discr.dt_geometric_factor() *
                  approximate_rk4_relative_imag_stability_region(stepper))
        if flux_type_arg == "central":
            max_dt *= 0.25

        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=3,
                                  logmgr=logmgr,
                                  max_dt_getter=lambda t: max_dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf, [
                    ("u", fields[0]),
                    ("v", fields[1:]),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#35
0
def main(write_output=True,
         flux_type_arg="upwind",
         dtype=np.float64,
         debug=[]):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import generate_gmsh
        mesh = generate_gmsh(GEOMETRY,
                             2,
                             allow_internal_boundaries=True,
                             force_dimension=2)

        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data,
                                     order=4,
                                     debug=debug,
                                     default_scalar_type=dtype)
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype)

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    source_center = 0
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import StrongWaveOperator
    op = StrongWaveOperator(
        -1,
        discr.dimensions,
        source_f=sym.CFunction("sin")(
            source_omega * sym.ScalarParameter("t")) * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist) /
                source_width**2),
        dirichlet_tag="boundary",
        neumann_tag=TAG_NONE,
        radiation_tag=TAG_NONE,
        flux_type=flux_type_arg)

    from hedge.tools import join_fields
    fields = join_fields(
        discr.volume_zeros(dtype=dtype),
        [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wiggly.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=4,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf, [
                    ("u", fields[0]),
                    ("v", fields[1:]),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#36
0
def main(write_output=True, allow_features=None, flux_type_arg=1, bdry_flux_type_arg=None, extra_discr_args={}):
    from hedge.mesh.generator import make_cylinder_mesh, make_box_mesh
    from hedge.tools import EOCRecorder, to_obj_array
    from math import sqrt, pi
    from analytic_solutions import (
        check_time_harmonic_solution,
        RealPartAdapter,
        SplitComplexAdapter,
        CylindricalFieldAdapter,
        CylindricalCavityMode,
        RectangularWaveguideMode,
        RectangularCavityMode,
    )
    from hedge.models.em import MaxwellOperator

    from hedge.backends import guess_run_context

    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    eoc_rec = EOCRecorder()

    cylindrical = False
    periodic = False

    if cylindrical:
        R = 1
        d = 2
        mode = CylindricalCavityMode(m=1, n=1, p=1, radius=R, height=d, epsilon=epsilon, mu=mu)
        r_sol = CylindricalFieldAdapter(RealPartAdapter(mode))
        c_sol = SplitComplexAdapter(CylindricalFieldAdapter(mode))

        if rcon.is_head_rank:
            mesh = make_cylinder_mesh(radius=R, height=d, max_volume=0.01)
    else:
        if periodic:
            mode = RectangularWaveguideMode(epsilon, mu, (3, 2, 1))
            periodicity = (False, False, True)
        else:
            periodicity = None
        mode = RectangularCavityMode(epsilon, mu, (1, 2, 2))

        if rcon.is_head_rank:
            mesh = make_box_mesh(max_volume=0.001, periodicity=periodicity)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4, 5, 6]:
        # for order in [1,2,3,4,5,6]:
        extra_discr_args.setdefault("debug", []).extend(["cuda_no_plan", "cuda_dump_kernels"])

        op = MaxwellOperator(epsilon, mu, flux_type=flux_type_arg, bdry_flux_type=bdry_flux_type_arg)

        discr = rcon.make_discretization(mesh_data, order=order, tune_for=op.op_template(), **extra_discr_args)

        from hedge.visualization import VtkVisualizer

        if write_output:
            vis = VtkVisualizer(discr, rcon, "em-%d" % order)

        mode.set_time(0)

        def get_true_field():
            return discr.convert_volume(
                to_obj_array(mode(discr).real.astype(discr.default_scalar_type).copy()), kind=discr.compute_kind
            )

        fields = get_true_field()

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep.runge_kutta import LSRK4TimeStepper

        stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type, rcon=rcon)
        # from hedge.timestep.dumka3 import Dumka3TimeStepper
        # stepper = Dumka3TimeStepper(3, dtype=discr.default_scalar_type, rcon=rcon)

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "maxwell-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from pytools.log import IntervalTimer

        vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
        logmgr.add_quantity(vis_timer)

        from hedge.log import EMFieldGetter, add_em_quantities

        field_getter = EMFieldGetter(discr, op, lambda: fields)
        add_em_quantities(logmgr, op, field_getter)

        logmgr.add_watches(["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

        # timestep loop -------------------------------------------------------
        rhs = op.bind(discr)
        final_time = 0.5e-9

        try:
            from hedge.timestep import times_and_steps

            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, fields=fields),
            )

            for step, t, dt in step_it:
                if step % 50 == 0 and write_output:
                    sub_timer = vis_timer.start_sub_timer()
                    e, h = op.split_eh(fields)
                    visf = vis.make_file("em-%d-%04d" % (order, step))
                    vis.add_data(
                        visf,
                        [("e", discr.convert_volume(e, kind="numpy")), ("h", discr.convert_volume(h, kind="numpy"))],
                        time=t,
                        step=step,
                    )
                    visf.close()
                    sub_timer.stop().submit()

                fields = stepper(fields, t, dt, rhs)

            mode.set_time(final_time)

            eoc_rec.add_data_point(order, discr.norm(fields - get_true_field()))

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

        if rcon.is_head_rank:
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 6
示例#37
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context(
    #["cuda"]
    )

    from hedge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    def boundary_tagger(vertices, el, face_nr, all_v):
        return ["inflow"]

    if rcon.is_head_rank:
        from hedge.mesh import make_rect_mesh, \
                               make_centered_regular_rect_mesh
        #mesh = make_rect_mesh((0,0), (10,1), max_area=0.01)
        refine = 1
        mesh = make_centered_regular_rect_mesh((0,0), (10,1), n=(20,4),
                            #periodicity=(True, False),
                            post_refine_factor=refine,
                            boundary_tagger=boundary_tagger)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        discr = rcon.make_discretization(mesh_data, order=order,
                        default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        shearflow = SteadyShearFlow()
        fields = shearflow.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = shearflow.properties()

        from hedge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=2, gamma=gamma, mu=mu,
                prandtl=prandtl, spec_gas_const=spec_gas_const,
                bc_inflow=shearflow, bc_outflow=shearflow, bc_noslip=shearflow,
                inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        # needed to get first estimate of maximum eigenvalue
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        from hedge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-cpu-%d-%d.dat" % (order, refine),
                            "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=0.3,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 10 == 0:
                #if False:
                    visf = vis.make_file("shearflow-%d-%04d" % (order, step))

                    #true_fields = shearflow.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                                #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                                #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                                #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
                                ],
                            expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                ("p", "0.4*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = shearflow.volume_interpolant(t, discr)
            l2_error = discr.norm(op.u(fields)-op.u(true_fields))
            eoc_rec.add_data_point(order, l2_error)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
示例#38
0
def main(write_output=True):
    from hedge.data import GivenFunction, ConstantGivenFunction

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    def boundary_tagger(fvi, el, fn, points):
        from math import atan2, pi
        normal = el.face_normals[fn]
        if -90/180*pi < atan2(normal[1], normal[0]) < 90/180*pi:
            return ["neumann"]
        else:
            return ["dirichlet"]

    if dim == 2:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(r=0.5, boundary_tagger=boundary_tagger,
                    max_area=1e-2)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0001,
                    boundary_tagger=lambda fvi, el, fn, points:
                    ["dirichlet"])
    else:
        raise RuntimeError, "bad number of dimensions"

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=5, 
            debug=[])

    def dirichlet_bc(x, el):
        from math import sin
        return sin(10*x[0])

    def rhs_c(x, el):
        if la.norm(x) < 0.1:
            return 1000
        else:
            return 0

    def my_diff_tensor():
        result = numpy.eye(dim)
        result[0,0] = 0.1
        return result

    try:
        from hedge.models.poisson import PoissonOperator
        from hedge.second_order import \
                IPDGSecondDerivative, LDGSecondDerivative, \
                StabilizedCentralSecondDerivative
        from hedge.mesh import TAG_NONE, TAG_ALL
        op = PoissonOperator(discr.dimensions, 
                diffusion_tensor=my_diff_tensor(),

                #dirichlet_tag="dirichlet",
                #neumann_tag="neumann", 

                dirichlet_tag=TAG_ALL,
                neumann_tag=TAG_NONE, 

                #dirichlet_tag=TAG_ALL,
                #neumann_tag=TAG_NONE, 

                dirichlet_bc=GivenFunction(dirichlet_bc),
                neumann_bc=ConstantGivenFunction(-10),

                scheme=StabilizedCentralSecondDerivative(),
                #scheme=LDGSecondDerivative(),
                #scheme=IPDGSecondDerivative(),
                )
        bound_op = op.bind(discr)

        from hedge.iterative import parallel_cg
        u = -parallel_cg(rcon, -bound_op, 
                bound_op.prepare_rhs(discr.interpolate_volume_function(rhs_c)), 
                debug=20, tol=5e-4,
                dot=discr.nodewise_dot_product,
                x=discr.volume_zeros())

        if write_output:
            from hedge.visualization import SiloVisualizer, VtkVisualizer
            vis = VtkVisualizer(discr, rcon)
            visf = vis.make_file("fld")
            vis.add_data(visf, [ ("sol", discr.convert_volume(u, kind="numpy")), ])
            visf.close()
    finally:
        discr.close()
示例#39
0
def main(write_output=True, allow_features=None):
    from hedge.timestep import RK4TimeStepper
    from hedge.mesh import make_ball_mesh, make_cylinder_mesh, make_box_mesh
    from hedge.visualization import \
            VtkVisualizer, \
            SiloVisualizer, \
            get_rank_partition
    from math import sqrt, pi

    from hedge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    dims = 3

    if rcon.is_head_rank:
        if dims == 2:
            from hedge.mesh import make_rect_mesh
            mesh = make_rect_mesh(a=(-10.5, -1.5), b=(10.5, 1.5), max_area=0.1)
        elif dims == 3:
            from hedge.mesh import make_box_mesh
            mesh = make_box_mesh(a=(-10.5, -1.5, -1.5),
                                 b=(10.5, 1.5, 1.5),
                                 max_volume=0.1)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    #for order in [1,2,3,4,5,6]:
    discr = rcon.make_discretization(mesh_data, order=3)

    if write_output:
        vis = VtkVisualizer(discr, rcon, "dipole")

    from analytic_solutions import DipoleFarField, SphericalFieldAdapter
    from hedge.data import ITimeDependentGivenFunction

    sph_dipole = DipoleFarField(
        q=1,  #C
        d=1 / 39,
        omega=2 * pi * 1e8,
        epsilon=epsilon0,
        mu=mu0,
    )
    cart_dipole = SphericalFieldAdapter(sph_dipole)

    class PointDipoleSource(ITimeDependentGivenFunction):
        def __init__(self):
            from pyrticle.tools import CInfinityShapeFunction
            sf = CInfinityShapeFunction(0.1 * sph_dipole.wavelength,
                                        discr.dimensions)
            self.num_sf = discr.interpolate_volume_function(
                lambda x, el: sf(x))
            self.vol_0 = discr.volume_zeros()

        def volume_interpolant(self, t, discr):
            from hedge.tools import make_obj_array
            return make_obj_array([
                self.vol_0, self.vol_0,
                sph_dipole.source_modulation(t) * self.num_sf
            ])

    from hedge.mesh import TAG_ALL, TAG_NONE
    if dims == 2:
        from hedge.models.em import TMMaxwellOperator as MaxwellOperator
    else:
        from hedge.models.em import MaxwellOperator

    op = MaxwellOperator(
        epsilon,
        mu,
        flux_type=1,
        pec_tag=TAG_NONE,
        absorb_tag=TAG_ALL,
        current=PointDipoleSource(),
    )

    fields = op.assemble_eh(discr=discr)

    if rcon.is_head_rank:
        print "#elements=", len(mesh.elements)

    stepper = RK4TimeStepper()

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "dipole.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from hedge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    from pytools.log import PushLogQuantity
    relerr_e_q = PushLogQuantity("relerr_e", "1",
                                 "Relative error in masked E-field")
    relerr_h_q = PushLogQuantity("relerr_h", "1",
                                 "Relative error in masked H-field")
    logmgr.add_quantity(relerr_e_q)
    logmgr.add_quantity(relerr_h_q)

    logmgr.add_watches([
        "step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max",
        "relerr_e", "relerr_h"
    ])

    if write_output:
        point_timeseries = [(open("b-x%d-vs-time.dat" % i,
                                  "w"), open("b-x%d-vs-time-true.dat" % i,
                                             "w"),
                             discr.get_point_evaluator(
                                 numpy.array([i, 0, 0][:dims],
                                             dtype=discr.default_scalar_type)))
                            for i in range(1, 5)]

    # timestep loop -------------------------------------------------------
    mask = discr.interpolate_volume_function(sph_dipole.far_field_mask)

    def apply_mask(field):
        from hedge.tools import log_shape
        ls = log_shape(field)
        result = discr.volume_empty(ls)
        from pytools import indices_in_shape
        for i in indices_in_shape(ls):
            result[i] = mask * field[i]

        return result

    rhs = op.bind(discr)

    t = 0
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=1e-8,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if write_output and step % 10 == 0:
                sub_timer = vis_timer.start_sub_timer()
                e, h = op.split_eh(fields)
                sph_dipole.set_time(t)
                true_e, true_h = op.split_eh(
                    discr.interpolate_volume_function(cart_dipole))
                visf = vis.make_file("dipole-%04d" % step)

                mask_e = apply_mask(e)
                mask_h = apply_mask(h)
                mask_true_e = apply_mask(true_e)
                mask_true_h = apply_mask(true_h)

                from pyvisfile.silo import DB_VARTYPE_VECTOR
                vis.add_data(visf, [("e", e), ("h", h), ("true_e", true_e),
                                    ("true_h", true_h), ("mask_e", mask_e),
                                    ("mask_h", mask_h),
                                    ("mask_true_e", mask_true_e),
                                    ("mask_true_h", mask_true_h)],
                             time=t,
                             step=step)
                visf.close()
                sub_timer.stop().submit()

                from hedge.tools import relative_error
                relerr_e_q.push_value(
                    relative_error(discr.norm(mask_e - mask_true_e),
                                   discr.norm(mask_true_e)))
                relerr_h_q.push_value(
                    relative_error(discr.norm(mask_h - mask_true_h),
                                   discr.norm(mask_true_h)))

                if write_output:
                    for outf_num, outf_true, evaluator in point_timeseries:
                        for outf, ev_h in zip([outf_num, outf_true],
                                              [h, true_h]):
                            outf.write("%g\t%g\n" %
                                       (t, op.mu * evaluator(ev_h[1])))
                            outf.flush()

            fields = stepper(fields, t, dt, rhs)

    finally:
        if write_output:
            vis.close()

        logmgr.save()
        discr.close()
示例#40
0
def run_convergence_test_advec(dtype,
                               flux_type,
                               random_partition,
                               mesh_gen,
                               debug_output=False):
    """Test whether 2/3D advection actually converges"""

    from hedge.timestep import RK4TimeStepper
    from hedge.tools import EOCRecorder
    from math import sin
    from hedge.data import TimeDependentGivenFunction
    from hedge.visualization import SiloVisualizer

    from hedge.backends import guess_run_context
    rcon = guess_run_context(["mpi"])

    # note: x component must remain zero because x-periodicity is used
    v = np.array([0.0, 0.9, 0.3])

    def f(x):
        return sin(x)

    def u_analytic(x, el, t):
        return f(
            (np.dot(-v[:dims], x) / la.norm(v[:dims]) + t * la.norm(v[:dims])))

    def boundary_tagger(vertices, el, face_nr, points):
        face_normal = el.face_normals[face_nr]
        if np.dot(face_normal, v[:len(face_normal)]) < 0:
            return ["inflow"]
        else:
            return ["outflow"]

    mesh = mesh_gen(boundary_tagger)
    eoc_rec = EOCRecorder()

    if random_partition:
        # Distribute elements randomly across nodes.
        # This is bad, efficiency-wise, but it puts stress
        # on the parallel implementation, which is desired here.
        # Another main point of this is to force the code to split
        # a periodic face pair across nodes.
        from random import choice
        partition = [choice(rcon.ranks) for el in mesh.elements]
    else:
        partition = None

    for order in [1, 2, 3, 4]:
        if rcon.is_head_rank:
            mesh_data = rcon.distribute_mesh(mesh, partition)
        else:
            mesh_data = rcon.receive_mesh()

        dims = mesh.points.shape[1]

        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=dtype)

        op = StrongAdvectionOperator(
            v[:dims],
            inflow_u=TimeDependentGivenFunction(u_analytic),
            flux_type=flux_type)
        if debug_output:
            vis = SiloVisualizer(discr, rcon)

        u = discr.interpolate_volume_function(
            lambda x, el: u_analytic(x, el, 0))
        ic = u.copy()

        if debug_output and rcon.is_head_rank:
            print "#elements=%d" % len(mesh.elements)

        test_name = "test-%s-o%d-m%s-r%s" % (
            flux_type, order, mesh_gen.__name__, random_partition)

        rhs = op.bind(discr)

        stepper = RK4TimeStepper(dtype=dtype)
        from hedge.timestep import times_and_steps
        final_time = 1
        step_it = times_and_steps(final_time=final_time,
                                  max_dt_getter=lambda t: op.estimate_timestep(
                                      discr, stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            u = stepper(u, t, dt, rhs)

        assert u.dtype == dtype

        u_true = discr.interpolate_volume_function(
            lambda x, el: u_analytic(x, el, final_time))
        error = u - u_true
        l2_error = discr.norm(error)

        if debug_output:
            visf = vis.make_file(test_name + "-final")
            vis.add_data(visf, [("u", u), ("u_true", u_true), ("ic", ic)])
            visf.close()

        eoc_rec.add_data_point(order, l2_error)

    if debug_output and rcon.is_head_rank:
        print "%s\n%s\n" % (flux_type.upper(), "-" * len(flux_type))
        print eoc_rec.pretty_print(abscissa_label="Poly. Order",
                                   error_label="L2 Error")

    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 3
    assert eoc_rec.estimate_order_of_convergence(2)[-1, 1] > 7
示例#41
0
def main(write_output=True, allow_features=None, flux_type_arg=1,
        bdry_flux_type_arg=None, extra_discr_args={}):
    from math import sqrt, pi
    from hedge.models.em import TEMaxwellOperator

    from hedge.backends import guess_run_context
    rcon = guess_run_context(allow_features)

    epsilon0 = 8.8541878176e-12 # C**2 / (N m**2)
    mu0 = 4*pi*1e-7 # N/A**2.
    c = 1/sqrt(mu0*epsilon0)

    materials = {"vacuum" : (epsilon0, mu0),
                 "dielectric" : (2*epsilon0, mu0)}

    output_dir = "2d_cavity"

    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)

    # should no tag raise an error or default to free space?
    def eps_val(x, el):
        for key in materials.keys():
            if el in material_elements[key]:
                return materials[key][0]
        raise ValueError, "Element does not belong to any material"

    def mu_val(x, el):
        for key in materials.keys():
            if el in material_elements[key]:
                return materials[key][1]
        raise ValueError, "Element does not belong to any material"

    # geometry of cavity
    d = 100e-3
    a = 150e-3

    # analytical frequency and transverse wavenumbers of resonance
    f0 = 9.0335649907522321e8
    h = 2*pi*f0/c
    l = -h*sqrt(2)

    # substitute the following and change materials for a homogeneous cavity
    #h = pi/a
    #l =-h

    def initial_val(discr):
        # the initial solution for the TE_10-like mode
        def initial_Hz(x, el):
            from math import cos, sin
            if el in material_elements["vacuum"]:
                return h*cos(h*x[0])
            else:
                return -l*sin(h*d)/sin(l*(a-d))*cos(l*(a-x[0]))

        from hedge.tools import make_obj_array
        result_zero = discr.volume_zeros(kind="numpy", dtype=numpy.float64)
        H_z = make_tdep_given(initial_Hz).volume_interpolant(0, discr)
        return make_obj_array([result_zero, result_zero, H_z])

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import generate_gmsh
        mesh = generate_gmsh(CAVITY_GEOMETRY, 2, force_dimension=2)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    # Work out which elements belong to each material
    material_elements = {}
    for key in materials.keys():
        material_elements[key] = set(mesh_data.tag_to_elements[key])

    order = 3
    #extra_discr_args.setdefault("debug", []).append("cuda_no_plan")
    #extra_discr_args.setdefault("debug", []).append("dump_optemplate_stages")

    from hedge.data import make_tdep_given
    from hedge.mesh import TAG_ALL

    op = TEMaxwellOperator(epsilon=make_tdep_given(eps_val), mu=make_tdep_given(mu_val), \
            flux_type=flux_type_arg, \
            bdry_flux_type=bdry_flux_type_arg, dimensions=2, pec_tag=TAG_ALL)
    # op = TEMaxwellOperator(epsilon=epsilon0, mu=mu0,
            # flux_type=flux_type_arg, \
            # bdry_flux_type=bdry_flux_type_arg, dimensions=2, pec_tag=TAG_ALL)

    discr = rcon.make_discretization(mesh_data, order=order,
            tune_for=op.op_template(),
            **extra_discr_args)

    # create the initial solution
    fields = initial_val(discr)

    from hedge.visualization import VtkVisualizer
    if write_output:
        from os.path import join
        vis = VtkVisualizer(discr, rcon, join(output_dir, "cav-%d" % order))

    # monitor the solution at a point to find the resonant frequency
    try:
        point_getter = discr.get_point_evaluator(numpy.array([75e-3, 25e-3, 0])) #[0.25, 0.25, 0.25]))
    except RuntimeError:
        point_getter = None

    if rcon.is_head_rank:
        print "---------------------------------------------"
        print "order %d" % order
        print "---------------------------------------------"
        print "#elements=", len(mesh.elements)

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type, rcon=rcon)
    #from hedge.timestep.dumka3 import Dumka3TimeStepper
    #stepper = Dumka3TimeStepper(3, dtype=discr.default_scalar_type, rcon=rcon)

    # diagnostics setup ---------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        from os.path import join
        log_file_name = join(output_dir, "cavity-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)

    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    #from hedge.log import EMFieldGetter, add_em_quantities
    #field_getter = EMFieldGetter(discr, op, lambda: fields)
    #add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
            ["step.max", "t_sim.max",
                #("W_field", "W_el+W_mag"),
                "t_step.max"]
            )

    # timestep loop -------------------------------------------------------
    rhs = op.bind(discr)
    final_time = 10e-9

    if point_getter is not None:
        from os.path import join
        pointfile = open(join(output_dir, "point.txt"), "wt")
        done_dt = False
    try:
        from hedge.timestep import times_and_steps
        from os.path import join
        step_it = times_and_steps(
                final_time=final_time, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                sub_timer = vis_timer.start_sub_timer()
                e, h = op.split_eh(fields)
                visf = vis.make_file(join(output_dir, "cav-%d-%04d") % (order, step))
                vis.add_data(visf,
                        [
                            ("e",
                                discr.convert_volume(e, kind="numpy")),
                            ("h",
                                discr.convert_volume(h, kind="numpy")),],
                        time=t, step=step
                        )
                visf.close()
                sub_timer.stop().submit()

            fields = stepper(fields, t, dt, rhs)
            if point_getter is not None:
                val = point_getter(fields)
                #print val
                if not done_dt:
                    pointfile.write("#%g\n" % dt)
                    done_dt = True
                pointfile.write("%g\n" %val[0])

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()

        if point_getter is not None:
            pointfile.close()
def main(write_output=True,
        dir_tag=TAG_NONE,
        neu_tag=TAG_NONE,
        rad_tag=TAG_ALL,
        flux_type_arg="upwind"):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-1, -1), b=(1, 1), max_area=0.003)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=4)

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    source_center = np.array([0.7, 0.4])
    source_width = 1/16
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from hedge.models.wave import VariableVelocityStrongWaveOperator
    op = VariableVelocityStrongWaveOperator(
            c=sym.If(sym.Comparison(
                np.dot(sym_x, sym_x), "<", 0.4**2),
                1, 0.5),
            dimensions=discr.dimensions,
            source=
            sym.CFunction("sin")(source_omega*sym.ScalarParameter("t"))
            * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist)
                / source_width**2),
            dirichlet_tag=dir_tag,
            neumann_tag=neu_tag,
            radiation_tag=rad_tag,
            flux_type=flux_type_arg
            )

    from hedge.tools import join_fields
    fields = join_fields(discr.volume_zeros(),
            [discr.volume_zeros() for i in range(discr.dimensions)])

    # {{{ diagnostics setup

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # }}}

    # {{{ timestep loop

    rhs = op.bind(discr)
    try:
        from hedge.timestep.stability import \
                approximate_rk4_relative_imag_stability_region
        max_dt = (
                1/discr.compile(op.max_eigenvalue_expr())()
                * discr.dt_non_geometric_factor()
                * discr.dt_geometric_factor()
                * approximate_rk4_relative_imag_stability_region(stepper))
        if flux_type_arg == "central":
            max_dt *= 0.25

        from hedge.timestep import times_and_steps
        step_it = times_and_steps(final_time=3, logmgr=logmgr,
                max_dt_getter=lambda t: max_dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf,
                        [
                            ("u", fields[0]),
                            ("v", fields[1:]),
                        ],
                        time=t,
                        step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#43
0
文件: sod-2d.py 项目: gimac/hedge
def main():
    from hedge.backends import guess_run_context

    rcon = guess_run_context()

    from hedge.tools import to_obj_array

    if rcon.is_head_rank:
        from hedge.mesh.generator import make_rect_mesh

        mesh = make_rect_mesh((-5, -5), (5, 5), max_area=0.01)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [1]:
        discr = rcon.make_discretization(mesh_data, order=order, default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer

        vis = VtkVisualizer(discr, rcon, "Sod2D-%d" % order)
        # vis = SiloVisualizer(discr, rcon)

        sod_field = Sod(gamma=1.4)
        fields = sod_field.volume_interpolant(0, discr)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        from hedge.mesh import TAG_ALL

        op = GasDynamicsOperator(
            dimensions=2,
            gamma=sod_field.gamma,
            mu=0.0,
            prandtl=sod_field.prandtl,
            bc_inflow=sod_field,
            bc_outflow=sod_field,
            bc_noslip=sod_field,
            inflow_tag=TAG_ALL,
            source=None,
        )

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        # limiter setup ------------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler

        limiter = SlopeLimiter1NEuler(discr, sod_field.gamma, 2, op)

        # integrator setup---------------------------------------------------------
        from hedge.timestep import SSPRK3TimeStepper, RK4TimeStepper

        stepper = SSPRK3TimeStepper(limiter=limiter)
        # stepper = SSPRK3TimeStepper()
        # stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, add_simulation_quantities, add_run_info

        logmgr = LogManager("euler-%d.dat" % order, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # filter setup-------------------------------------------------------------
        from hedge.discretization import Filter, ExponentialFilterResponseFunction

        mode_filter = Filter(discr, ExponentialFilterResponseFunction(min_amplification=0.9, order=4))

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps

            step_it = times_and_steps(
                final_time=1.0,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]),
            )

            for step, t, dt in step_it:
                if step % 5 == 0:
                    # if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    # true_fields = vortex.volume_interpolant(t, discr)

                    # from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                            ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                            ("u", discr.convert_volume(op.u(fields), kind="numpy")),
                            # ("true_rho", op.rho(true_fields)),
                            # ("true_e", op.e(true_fields)),
                            # ("true_rho_u", op.rho_u(true_fields)),
                            # ("true_u", op.u(true_fields)),
                            # ("rhs_rho", op.rho(rhs_fields)),
                            # ("rhs_e", op.e(rhs_fields)),
                            # ("rhs_rho_u", op.rho_u(rhs_fields)),
                        ],
                        # expressions=[
                        # ("diff_rho", "rho-true_rho"),
                        # ("diff_e", "e-true_e"),
                        # ("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
                        # ("p", "0.4*(e- 0.5*(rho_u*u))"),
                        # ],
                        time=t,
                        step=step,
                    )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                # fields = limiter(fields)
                # fields = mode_filter(fields)

                assert not numpy.isnan(numpy.sum(fields[0]))
        finally:
            vis.close()
            logmgr.close()
            discr.close()

        # not solution, just to check against when making code changes
        true_fields = sod_field.volume_interpolant(t, discr)
        print discr.norm(fields - true_fields)
示例#44
0
def test_kv_with_no_charge():
    from random import seed
    seed(0)

    from pyrticle.units import SIUnitsWithNaturalConstants
    units = SIUnitsWithNaturalConstants()

    # discretization setup ----------------------------------------------------
    from hedge.mesh import make_cylinder_mesh
    from hedge.backends import guess_run_context

    rcon = guess_run_context([])

    tube_length = 100*units.MM
    mesh = make_cylinder_mesh(radius=25*units.MM, height=tube_length, periodic=True)

    discr = rcon.make_discretization(mesh, order=3)

    dt = discr.dt_factor(units.VACUUM_LIGHT_SPEED()) / 2
    final_time = 1*units.M/units.VACUUM_LIGHT_SPEED()
    nsteps = int(final_time/dt)+1
    dt = final_time/nsteps

    # particles setup ---------------------------------------------------------
    from pyrticle.cloud import PicMethod
    from pyrticle.deposition.shape import ShapeFunctionDepositor
    from pyrticle.pusher import MonomialParticlePusher

    method = PicMethod(discr, units,
            ShapeFunctionDepositor(),
            MonomialParticlePusher(),
            3, 3)

    nparticles = 10000
    cloud_charge = 1e-9 * units.C
    electrons_per_particle = cloud_charge/nparticles/units.EL_CHARGE

    el_energy = 5.2e6 * units.EV
    gamma = el_energy/units.EL_REST_ENERGY()
    beta = (1-1/gamma**2)**0.5

    from pyrticle.distribution import KVZIntervalBeam
    beam = KVZIntervalBeam(units,
            total_charge=0,
            p_charge=0,
            p_mass=electrons_per_particle*units.EL_MASS,
            radii=2*[2.5*units.MM],
            emittances=2*[5 * units.MM * units.MRAD],
            z_length=5*units.MM,
            z_pos=10*units.MM,
            beta=beta)

    state = method.make_state()
    method.add_particles(state, beam.generate_particles(), nparticles)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager
    from pyrticle.log import add_beam_quantities, StateObserver
    observer = StateObserver(method, None)
    logmgr = LogManager(mode="w")
    add_beam_quantities(logmgr, observer, axis=0, beam_axis=2)

    from pyrticle.distribution import KVPredictedRadius
    logmgr.add_quantity(KVPredictedRadius(dt,
        beam_v=beta*units.VACUUM_LIGHT_SPEED(),
        predictor=beam.get_rms_predictor(axis=0),
        suffix="x_rms"))
    logmgr.add_quantity(KVPredictedRadius(dt,
        beam_v=beta*units.VACUUM_LIGHT_SPEED(),
        predictor=beam.get_total_predictor(axis=0),
        suffix="x_total"))

    # timestep loop -----------------------------------------------------------
    vel = method.velocities(state)
    from hedge.tools import join_fields
    def rhs(t, y):
        return join_fields([
            vel,
            0*vel,
            0, # drecon
            ])

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    t = 0

    from pyrticle.cloud import TimesteppablePicState
    ts_state = TimesteppablePicState(method, state)

    for step in xrange(nsteps):
        observer.set_fields_and_state(None, ts_state.state)

        logmgr.tick()

        ts_state = stepper(ts_state, t, dt, rhs)
        method.upkeep(ts_state.state)

        t += dt

    logmgr.tick()

    _, _, err_table = logmgr.get_expr_dataset("(rx_rms-rx_rms_theory)/rx_rms_theory")
    rel_max_rms_error = max(err for step, err in err_table)
    assert rel_max_rms_error < 0.01
示例#45
0
def main(write_output=True,
         dir_tag=TAG_NONE,
         neu_tag=TAG_NONE,
         rad_tag=TAG_ALL,
         flux_type_arg="upwind",
         dtype=np.float64,
         debug=[]):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    if dim == 1:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(-10, 10, 500)
    elif dim == 2:
        from hedge.mesh.generator import make_rect_mesh
        if rcon.is_head_rank:
            mesh = make_rect_mesh(a=(-0.5, -0.5), b=(0.5, 0.5), max_area=0.008)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.0005)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype)

    from hedge.models.wave import StrongWaveOperator
    from hedge.mesh import TAG_ALL, TAG_NONE  # noqa

    source_center = np.array([0.1, 0.22])
    source_width = 0.05
    source_omega = 3

    import hedge.optemplate as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    op = StrongWaveOperator(
        -1,
        dim,
        source_f=sym.CFunction("sin")(
            source_omega * sym.ScalarParameter("t")) * sym.CFunction("exp")(
                -np.dot(sym_source_center_dist, sym_source_center_dist) /
                source_width**2),
        dirichlet_tag=dir_tag,
        neumann_tag=neu_tag,
        radiation_tag=rad_tag,
        flux_type=flux_type_arg)

    discr = rcon.make_discretization(mesh_data,
                                     order=4,
                                     debug=debug,
                                     default_scalar_type=dtype,
                                     tune_for=op.op_template())

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    from hedge.tools import join_fields
    fields = join_fields(
        discr.volume_zeros(dtype=dtype),
        [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # {{{ diagnostics setup

    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wave.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    stepper.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: fields[0]
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # }}}

    # {{{ timestep loop

    rhs = op.bind(discr)
    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=4,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf, [
                    ("u", discr.convert_volume(fields[0], kind="numpy")),
                    ("v", discr.convert_volume(fields[1:], kind="numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#46
0
def main(write_output=True):
    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script("..")

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import EOCRecorder
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from hedge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
                post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        from gas_dynamics_initials import Vortex
        flow = Vortex()

        from hedge.models.gas_dynamics import (
                GasDynamicsOperator, PolytropeEOS, GammaLawEOS)

        from hedge.mesh import TAG_ALL
        # works equally well for GammaLawEOS
        op = GasDynamicsOperator(dimensions=2, mu=flow.mu,
                prandtl=flow.prandtl, spec_gas_const=flow.spec_gas_const,
                equation_of_state=PolytropeEOS(flow.gamma),
                bc_inflow=flow, bc_outflow=flow, bc_noslip=flow,
                inflow_tag=TAG_ALL, source=None)

        discr = rcon.make_discretization(mesh_data, order=order,
                        default_scalar_type=numpy.float64,
                        quad_min_degrees={
                            "gasdyn_vol": 3*order,
                            "gasdyn_face": 3*order,
                            },
                        tune_for=op.op_template(),
                        debug=["cuda_no_plan"])

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        fields = flow.volume_interpolant(0, discr)

        euler_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)


        # limiter ------------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, flow.gamma, 2, op)

        from hedge.timestep.runge_kutta import SSP3TimeStepper
        #stepper = SSP3TimeStepper(limiter=limiter)
        stepper = SSP3TimeStepper(
                vector_primitive_factory=discr.get_vector_primitive_factory())

        #from hedge.timestep import RK4TimeStepper
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            final_time = flow.final_time
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=final_time, logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            print "run until t=%g" % final_time
            for step, t, dt in step_it:
                if step % 10 == 0 and write_output:
                #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                                #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                                #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                                #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                                #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                                #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                                #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            #expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                #("p", "0.4*(e- 0.5*(rho_u*u))"),
                                #],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                #fields = limiter(fields)

                assert not numpy.isnan(numpy.sum(fields[0]))

            true_fields = flow.volume_interpolant(final_time, discr)
            l2_error = discr.norm(fields-true_fields)
            l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
            l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

    # after order loop
    assert eoc_rec.estimate_order_of_convergence()[0,1] > 6
示例#47
0
def run_convergence_test_advec(dtype, debug_output=False):
    """Test whether 2/3D advection actually converges"""

    from hedge.mesh.generator import make_ball_mesh, make_box_mesh, make_rect_mesh
    from hedge.timestep import RK4TimeStepper
    from hedge.tools import EOCRecorder
    from math import sin, pi, sqrt
    from hedge.models.advection import StrongAdvectionOperator
    from hedge.data import TimeDependentGivenFunction
    from hedge.visualization import SiloVisualizer

    from hedge.backends import guess_run_context
    rcon = guess_run_context(["mpi"])

    # note: x component must remain zero because x-periodicity is used
    v = numpy.array([0.0,0.9,0.3])

    def f(x):
        return sin(x)

    def u_analytic(x, el, t):
        return f((numpy.dot(-v[:dims],x)/la.norm(v[:dims])+t*la.norm(v[:dims])))

    def boundary_tagger(vertices, el, face_nr, points):
        face_normal = el.face_normals[face_nr]
        if numpy.dot(face_normal, v[:len(face_normal)]) < 0:
            return ["inflow"]
        else:
            return ["outflow"]

    for i_mesh, mesh in enumerate([
        # 2D semiperiodic
        make_rect_mesh(b=(2*pi,3), max_area=0.4,
            periodicity=(True, False),
            subdivisions=(5,10),
            boundary_tagger=boundary_tagger, 
            ),
        # 3D x-periodic
        make_box_mesh((0,0,0), (2*pi, 2, 2), max_volume=0.4,
            periodicity=(True, False, False),
            boundary_tagger=boundary_tagger, 
            ),
        # non-periodic
        make_ball_mesh(r=pi, 
            boundary_tagger=boundary_tagger, max_volume=0.7),
        ]):
        for flux_type in StrongAdvectionOperator.flux_types:
            for random_partition in [True, False]:
                eoc_rec = EOCRecorder()

                if random_partition:
                    # Distribute elements randomly across nodes.
                    # This is bad, efficiency-wise, but it puts stress
                    # on the parallel implementation, which is desired here.
                    # Another main point of this is to force the code to split
                    # a periodic face pair across nodes.
                    from random import choice
                    partition = [choice(rcon.ranks) for el in mesh.elements]
                else:
                    partition = None

                for order in [1,2,3,4]:
                    if rcon.is_head_rank:
                        mesh_data = rcon.distribute_mesh(mesh, partition)
                    else:
                        mesh_data = rcon.receive_mesh()

                    dims = mesh.points.shape[1]

                    discr = rcon.make_discretization(mesh_data, order=order,
                            default_scalar_type=dtype)

                    op = StrongAdvectionOperator(v[:dims], 
                            inflow_u=TimeDependentGivenFunction(u_analytic),
                            flux_type=flux_type)
                    if debug_output:
                        vis = SiloVisualizer(discr, rcon)

                    u = discr.interpolate_volume_function(
                            lambda x, el: u_analytic(x, el, 0))
                    ic = u.copy()

                    if debug_output and rcon.is_head_rank:
                        print "#elements=%d" % len(mesh.elements)

                    test_name = "test-%s-o%d-m%d-r%s" % (
                            flux_type, order, i_mesh, random_partition)

                    rhs = op.bind(discr)

                    stepper = RK4TimeStepper(dtype=dtype)
                    from hedge.timestep import times_and_steps
                    final_time = 1
                    step_it = times_and_steps(
                            final_time=final_time,
                            max_dt_getter=lambda t: op.estimate_timestep(discr,
                                stepper=stepper, t=t, fields=u))

                    for step, t, dt in step_it:
                        u = stepper(u, t, dt, rhs)

                    assert u.dtype == dtype

                    u_true = discr.interpolate_volume_function(
                            lambda x, el: u_analytic(x, el, final_time))
                    error = u-u_true
                    l2_error = discr.norm(error)

                    if debug_output:
                        visf = vis.make_file(test_name+"-final")
                        vis.add_data(visf, [
                            ("u", u),
                            ("u_true", u_true),
                            ("ic", ic)])
                        visf.close()

                    eoc_rec.add_data_point(order, l2_error)

                if debug_output and rcon.is_head_rank:
                    print "%s\n%s\n" % (flux_type.upper(), "-" * len(flux_type))
                    print eoc_rec.pretty_print(abscissa_label="Poly. Order", 
                            error_label="L2 Error")

                assert eoc_rec.estimate_order_of_convergence()[0,1] > 3
                assert eoc_rec.estimate_order_of_convergence(2)[-1,1] > 7
示例#48
0
def main(write_output=True, order=6):
    from hedge.data import TimeConstantGivenFunction, \
            GivenFunction
    from os.path import join
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 3
    output_dir = "octahedron"
    
    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)

    if rcon.is_head_rank:
        from hedge.mesh.reader.gmsh import read_gmsh
        mesh = read_gmsh("octahedron.msh", 
                boundary_tagger=lambda x,y,z,w: ["traction"])

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class Displacement:
        shape = (3,)
        def __call__(self, x, el):
            R = x[0] + x[1] + x[2]
            return [-R/30, -R/30, -R/30]
    
    final_time = 3
    
    discr = rcon.make_discretization(mesh_data, order=order, 
            debug=[])

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, join(output_dir, "test-%d" % order))
        
    if rcon.is_head_rank:
        print "order %d" % order
        print "#elements=", len(mesh.elements)
 
    from hedge.mesh import TAG_NONE, TAG_ALL
    from hedge.models.solid_mechanics import SolidMechanicsOperator
    from hedge.models.solid_mechanics.constitutive_laws import NeoHookean
    
    material = NeoHookean(50, 10, 0.3)
    
    op = SolidMechanicsOperator(material, 
            init_displacement=GivenFunction(Displacement()),
            dimensions=discr.dimensions)
    fields = op.assemble_vars(discr=discr)
    
    from hedge.timestep import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    from time import time
    last_tsep = time()
    t = 0

    # diagnostics setup -------------------------------------------------
    from pytools.log import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info
    if write_output:
        log_file_name = join(output_dir, "oct-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from pytools.log import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])
    
    p_calc = op.bind_stress_calculator(discr)
    rhs = op.bind(discr)

    try:
        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=final_time, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            u, v = op.split_vars(fields)
            P    = p_calc(u)
            if step % 5 == 0 and write_output:
                visf = vis.make_file(join(output_dir, "oct-%d-%04d" % (order, step)))
                vis.add_data(visf,
                    [
                        ("u", discr.convert_volume(u, "numpy")),
                        ("v", discr.convert_volume(v, "numpy")),
                        ("P", discr.convert_volume(P, "numpy"))
                        ],
                    time=t, step=step
                    )
                visf.close()
            
            fields = stepper(fields, t, dt, rhs)
    finally:
        if write_output:
            vis.close()
        logmgr.close()
        discr.close()
示例#49
0
def main(write_output=True) :
    from math import sin, cos, pi, exp, sqrt
    from hedge.data import TimeConstantGivenFunction, \
            ConstantGivenFunction

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    def boundary_tagger(fvi, el, fn, all_v):
        if el.face_normals[fn][0] > 0:
            return ["dirichlet"]
        else:
            return ["neumann"]

    if dim == 2:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(r=0.5, boundary_tagger=boundary_tagger)
    elif dim == 3:
        if rcon.is_head_rank:
            from hedge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.001)
    else:
        raise RuntimeError, "bad number of dimensions"

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=3,
            debug=["cuda_no_plan"],
            default_scalar_type=numpy.float64)

    if write_output:
        from hedge.visualization import  VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "fld")

    def u0(x, el):
        if la.norm(x) < 0.2:
            return 1
        else:
            return 0

    def coeff(x, el):
        if x[0] < 0:
            return 0.25
        else:
            return 1

    def dirichlet_bc(t, x):
        return 0

    def neumann_bc(t, x):
        return 2

    from hedge.models.diffusion import DiffusionOperator
    op = DiffusionOperator(discr.dimensions,
            #coeff=coeff,
            dirichlet_tag="dirichlet",
            dirichlet_bc=TimeConstantGivenFunction(ConstantGivenFunction(0)),
            neumann_tag="neumann",
            neumann_bc=TimeConstantGivenFunction(ConstantGivenFunction(1))
            )
    u = discr.interpolate_volume_function(u0)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "heat.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from hedge.log import LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    from hedge.timestep.runge_kutta import LSRK4TimeStepper, ODE45TimeStepper
    from hedge.timestep.dumka3 import Dumka3TimeStepper
    #stepper = LSRK4TimeStepper()
    stepper = Dumka3TimeStepper(3, rtol=1e-6, rcon=rcon,
            vector_primitive_factory=discr.get_vector_primitive_factory(),
            dtype=discr.default_scalar_type)
    #stepper = ODE45TimeStepper(rtol=1e-6, rcon=rcon,
            #vector_primitive_factory=discr.get_vector_primitive_factory(),
            #dtype=discr.default_scalar_type)
    stepper.add_instrumentation(logmgr)

    rhs = op.bind(discr)
    try:
        next_dt = op.estimate_timestep(discr,
                stepper=LSRK4TimeStepper(), t=0, fields=u)

        from hedge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=0.1, logmgr=logmgr,
                max_dt_getter=lambda t: next_dt,
                taken_dt_getter=lambda: taken_dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", discr.convert_volume(u, kind="numpy")), 
                    ], time=t, step=step)
                visf.close()

            u, t, taken_dt, next_dt = stepper(u, t, next_dt, rhs)
            #u = stepper(u, t, dt, rhs)

        assert discr.norm(u) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
示例#50
0
def main(write_output=True, dtype=np.float32):
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.mesh.generator import make_rect_mesh
    if rcon.is_head_rank:
        h_fac = 1
        mesh = make_rect_mesh(a=(0,0),b=(1,1), max_area=h_fac**2*1e-4,
                periodicity=(True,True),
                subdivisions=(int(70/h_fac), int(70/h_fac)))

    from hedge.models.gas_dynamics.lbm import \
            D2Q9LBMMethod, LatticeBoltzmannOperator

    op = LatticeBoltzmannOperator(
            D2Q9LBMMethod(), lbm_delta_t=0.001, nu=1e-4)

    if rcon.is_head_rank:
        print "%d elements" % len(mesh.elements)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=3,
            default_scalar_type=dtype,
            debug=["cuda_no_plan"])
    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype,
            #vector_primitive_factory=discr.get_vector_primitive_factory()
            )

    from hedge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    from hedge.data import CompiledExpressionData
    def ic_expr(t, x, fields):
        from hedge.optemplate import CFunction
        from pymbolic.primitives import IfPositive
        from pytools.obj_array import make_obj_array

        tanh = CFunction("tanh")
        sin = CFunction("sin")

        rho = 1
        u0 = 0.05
        w = 0.05
        delta = 0.05

        from hedge.optemplate.primitives import make_common_subexpression as cse
        u = cse(make_obj_array([
            IfPositive(x[1]-1/2,
                u0*tanh(4*(3/4-x[1])/w),
                u0*tanh(4*(x[1]-1/4)/w)),
            u0*delta*sin(2*np.pi*(x[0]+1/4))]),
            "u")

        return make_obj_array([
            op.method.f_equilibrium(rho, alpha, u)
            for alpha in range(len(op.method))
            ])


    # timestep loop -----------------------------------------------------------
    stream_rhs = op.bind_rhs(discr)
    collision_update = op.bind(discr, op.collision_update)
    get_rho = op.bind(discr, op.rho)
    get_rho_u = op.bind(discr, op.rho_u)


    f_bar = CompiledExpressionData(ic_expr).volume_interpolant(0, discr)

    from hedge.discretization import ExponentialFilterResponseFunction
    from hedge.optemplate.operators import FilterOperator
    mode_filter = FilterOperator(
            ExponentialFilterResponseFunction(min_amplification=0.9, order=4))\
                    .bind(discr)

    final_time = 1000
    try:
        lbm_dt = op.lbm_delta_t
        dg_dt = op.estimate_timestep(discr, stepper=stepper)
        print dg_dt

        dg_steps_per_lbm_step = int(np.ceil(lbm_dt / dg_dt))
        dg_dt = lbm_dt / dg_steps_per_lbm_step

        lbm_steps = int(final_time // op.lbm_delta_t)
        for step in xrange(lbm_steps):
            t = step*lbm_dt

            if step % 100 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                rho = get_rho(f_bar)
                rho_u = get_rho_u(f_bar)
                vis.add_data(visf,
                        [ ("fbar%d" %i, 
                            discr.convert_volume(f_bar_i, "numpy")) for i, f_bar_i in enumerate(f_bar)]+
                        [
                            ("rho", discr.convert_volume(rho, "numpy")),
                            ("rho_u", discr.convert_volume(rho_u, "numpy")),
                        ],
                        time=t,
                        step=step)
                visf.close()

            print "step=%d, t=%f" % (step, t)

            f_bar = collision_update(f_bar)

            for substep in range(dg_steps_per_lbm_step):
                f_bar = stepper(f_bar, t + substep*dg_dt, dg_dt, stream_rhs)

            #f_bar = mode_filter(f_bar)

    finally:
        if write_output:
            vis.close()

        discr.close()
示例#51
0
def main():
    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import to_obj_array

    if rcon.is_head_rank:
        from hedge.mesh.generator import make_rect_mesh
        mesh = make_rect_mesh((-5, -5), (5, 5), max_area=0.01)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [1]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "Sod2D-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        sod_field = Sod(gamma=1.4)
        fields = sod_field.volume_interpolant(0, discr)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        from hedge.mesh import TAG_ALL
        op = GasDynamicsOperator(dimensions=2,
                                 gamma=sod_field.gamma,
                                 mu=0.0,
                                 prandtl=sod_field.prandtl,
                                 bc_inflow=sod_field,
                                 bc_outflow=sod_field,
                                 bc_noslip=sod_field,
                                 inflow_tag=TAG_ALL,
                                 source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        # limiter setup ------------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, sod_field.gamma, 2, op)

        # integrator setup---------------------------------------------------------
        from hedge.timestep import SSPRK3TimeStepper, RK4TimeStepper
        stepper = SSPRK3TimeStepper(limiter=limiter)
        #stepper = SSPRK3TimeStepper()
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("euler-%d.dat" % order, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # filter setup-------------------------------------------------------------
        from hedge.discretization import Filter, ExponentialFilterResponseFunction
        mode_filter = Filter(
            discr,
            ExponentialFilterResponseFunction(min_amplification=0.9, order=4))

        # timestep loop -------------------------------------------------------
        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=1.0,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 5 == 0:
                    #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", op.rho(true_fields)),
                            #("true_e", op.e(true_fields)),
                            #("true_rho_u", op.rho_u(true_fields)),
                            #("true_u", op.u(true_fields)),

                            #("rhs_rho", op.rho(rhs_fields)),
                            #("rhs_e", op.e(rhs_fields)),
                            #("rhs_rho_u", op.rho_u(rhs_fields)),
                        ],
                        #expressions=[
                        #("diff_rho", "rho-true_rho"),
                        #("diff_e", "e-true_e"),
                        #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                        #("p", "0.4*(e- 0.5*(rho_u*u))"),
                        #],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                # fields = limiter(fields)
                # fields = mode_filter(fields)

                assert not numpy.isnan(numpy.sum(fields[0]))
        finally:
            vis.close()
            logmgr.close()
            discr.close()

        # not solution, just to check against when making code changes
        true_fields = sod_field.volume_interpolant(t, discr)
        print discr.norm(fields - true_fields)
示例#52
0
def test_with_static_fields():
    from pyrticle.units import SIUnitsWithNaturalConstants

    units = SIUnitsWithNaturalConstants()

    from hedge.discretization.local import TetrahedronDiscretization
    from hedge.mesh.generator import \
            make_box_mesh, \
            make_cylinder_mesh
    from hedge.discretization import Discretization

    # discretization setup ----------------------------------------------------
    radius = 1 * units.M
    full_mesh = make_cylinder_mesh(radius=radius,
                                   height=2 * radius,
                                   periodic=True,
                                   radial_subdivisions=30)

    from hedge.backends import guess_run_context

    pcon = guess_run_context([])

    if pcon.is_head_rank:
        mesh = pcon.distribute_mesh(full_mesh)
    else:
        mesh = pcon.receive_mesh()

    discr = pcon.make_discretization(mesh, order=1)

    # particles setup ---------------------------------------------------------
    def get_setup(case):
        c = units.VACUUM_LIGHT_SPEED()
        from static_field import LarmorScrew, EBParallel
        if case == "screw":
            return LarmorScrew(units,
                               mass=units.EL_MASS,
                               charge=units.EL_CHARGE,
                               c=c,
                               vpar=c * 0.8,
                               vperp=c * 0.1,
                               bz=1e-3,
                               nparticles=4)
        elif case == "epb":
            return EBParallel(units,
                              mass=units.EL_MASS,
                              charge=units.EL_CHARGE,
                              c=c,
                              ez=1e+5,
                              bz=1e-3,
                              radius=0.5 * radius,
                              nparticles=1)
        else:
            raise ValueError, "invalid test case"

    from pyrticle.pusher import \
            MonomialParticlePusher, \
            AverageParticlePusher

    from static_field import run_setup

    for pusher in [MonomialParticlePusher, AverageParticlePusher]:
        for case in ["screw", "epb"]:
            casename = "%s-%s" % (case, pusher.__class__.__name__.lower())
            run_setup(units, casename, get_setup(case), discr, pusher)
示例#53
0
def main(write_output=True):
    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script("..")

    from hedge.backends import guess_run_context
    rcon = guess_run_context()

    from hedge.tools import EOCRecorder
    eoc_rec = EOCRecorder()


    if rcon.is_head_rank:
        from hedge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
                post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    # a second mesh to regrid to
    if rcon.is_head_rank:
        from hedge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh2 = make_centered_regular_rect_mesh((0,-5), (10,5), n=(8,8),
                post_refine_factor=refine)
        mesh_data2 = rcon.distribute_mesh(mesh2)
    else:
        mesh_data2 = rcon.receive_mesh()



    for order in [3,4]:
        discr = rcon.make_discretization(mesh_data, order=order,
                        default_scalar_type=numpy.float64,
                        quad_min_degrees={
                            "gasdyn_vol": 3*order,
                            "gasdyn_face": 3*order,
                            })

        discr2 = rcon.make_discretization(mesh_data2, order=order,
                        default_scalar_type=numpy.float64,
                        quad_min_degrees={
                            "gasdyn_vol": 3*order,
                            "gasdyn_face": 3*order,
                            })


        from hedge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        from gas_dynamics_initials import Vortex
        vortex = Vortex()
        fields = vortex.volume_interpolant(0, discr)

        from hedge.models.gas_dynamics import GasDynamicsOperator
        from hedge.mesh import TAG_ALL

        op = GasDynamicsOperator(dimensions=2, gamma=vortex.gamma, mu=vortex.mu,
                prandtl=vortex.prandtl, spec_gas_const=vortex.spec_gas_const,
                bc_inflow=vortex, bc_outflow=vortex, bc_noslip=vortex,
                inflow_tag=TAG_ALL, source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)


        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements for mesh 1 =", len(mesh.elements)
            print "#elements for mesh 2 =", len(mesh2.elements)


        # limiter ------------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, vortex.gamma, 2, op)

        from hedge.timestep import SSPRK3TimeStepper
        #stepper = SSPRK3TimeStepper(limiter=limiter)
        stepper = SSPRK3TimeStepper()

        #from hedge.timestep import RK4TimeStepper
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            final_time = 0.2
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=final_time, logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 10 == 0 and write_output:
                #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                                #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                                #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                                #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                                #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                                #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                                #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            #expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                #("p", "0.4*(e- 0.5*(rho_u*u))"),
                                #],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                #fields = limiter(fields)

                #regrid to discr2 at some arbitrary time
                if step == 21:

                    #get interpolated fields
                    fields = discr.get_regrid_values(fields, discr2, dtype=None, use_btree=True, thresh=1e-8)
                    #get new stepper (old one has reference to discr
                    stepper = SSPRK3TimeStepper()
                    #new bind
                    euler_ex = op.bind(discr2)
                    #new rhs
                    max_eigval = [0]
                    def rhs(t, q):
                        ode_rhs, speed = euler_ex(t, q)
                        max_eigval[0] = speed
                        return ode_rhs
                    rhs(t+dt, fields)
                    #add logmanager
                    #discr2.add_instrumentation(logmgr)
                    #new step_it
                    step_it = times_and_steps(
                        final_time=final_time, logmgr=logmgr,
                        max_dt_getter=lambda t: op.estimate_timestep(discr2,
                            stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

                    #new visualization
                    vis.close()
                    vis = VtkVisualizer(discr2, rcon, "vortexNewGrid-%d" % order)
                    discr=discr2



                assert not numpy.isnan(numpy.sum(fields[0]))

            true_fields = vortex.volume_interpolant(final_time, discr)
            l2_error = discr.norm(fields-true_fields)
            l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
            l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()
示例#54
0
def test_kv_with_no_charge():
    from random import seed
    seed(0)

    from pyrticle.units import SIUnitsWithNaturalConstants
    units = SIUnitsWithNaturalConstants()

    # discretization setup ----------------------------------------------------
    from hedge.mesh import make_cylinder_mesh
    from hedge.backends import guess_run_context

    rcon = guess_run_context([])

    tube_length = 100 * units.MM
    mesh = make_cylinder_mesh(radius=25 * units.MM,
                              height=tube_length,
                              periodic=True)

    discr = rcon.make_discretization(mesh, order=3)

    dt = discr.dt_factor(units.VACUUM_LIGHT_SPEED()) / 2
    final_time = 1 * units.M / units.VACUUM_LIGHT_SPEED()
    nsteps = int(final_time / dt) + 1
    dt = final_time / nsteps

    # particles setup ---------------------------------------------------------
    from pyrticle.cloud import PicMethod
    from pyrticle.deposition.shape import ShapeFunctionDepositor
    from pyrticle.pusher import MonomialParticlePusher

    method = PicMethod(discr, units, ShapeFunctionDepositor(),
                       MonomialParticlePusher(), 3, 3)

    nparticles = 10000
    cloud_charge = 1e-9 * units.C
    electrons_per_particle = cloud_charge / nparticles / units.EL_CHARGE

    el_energy = 5.2e6 * units.EV
    gamma = el_energy / units.EL_REST_ENERGY()
    beta = (1 - 1 / gamma**2)**0.5

    from pyrticle.distribution import KVZIntervalBeam
    beam = KVZIntervalBeam(units,
                           total_charge=0,
                           p_charge=0,
                           p_mass=electrons_per_particle * units.EL_MASS,
                           radii=2 * [2.5 * units.MM],
                           emittances=2 * [5 * units.MM * units.MRAD],
                           z_length=5 * units.MM,
                           z_pos=10 * units.MM,
                           beta=beta)

    state = method.make_state()
    method.add_particles(state, beam.generate_particles(), nparticles)

    # diagnostics setup -------------------------------------------------------
    from pytools.log import LogManager
    from pyrticle.log import add_beam_quantities, StateObserver
    observer = StateObserver(method, None)
    logmgr = LogManager(mode="w")
    add_beam_quantities(logmgr, observer, axis=0, beam_axis=2)

    from pyrticle.distribution import KVPredictedRadius
    logmgr.add_quantity(
        KVPredictedRadius(dt,
                          beam_v=beta * units.VACUUM_LIGHT_SPEED(),
                          predictor=beam.get_rms_predictor(axis=0),
                          suffix="x_rms"))
    logmgr.add_quantity(
        KVPredictedRadius(dt,
                          beam_v=beta * units.VACUUM_LIGHT_SPEED(),
                          predictor=beam.get_total_predictor(axis=0),
                          suffix="x_total"))

    # timestep loop -----------------------------------------------------------
    vel = method.velocities(state)
    from hedge.tools import join_fields

    def rhs(t, y):
        return join_fields([
            vel,
            0 * vel,
            0,  # drecon
        ])

    from hedge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    t = 0

    from pyrticle.cloud import TimesteppablePicState
    ts_state = TimesteppablePicState(method, state)

    for step in xrange(nsteps):
        observer.set_fields_and_state(None, ts_state.state)

        logmgr.tick()

        ts_state = stepper(ts_state, t, dt, rhs)
        method.upkeep(ts_state.state)

        t += dt

    logmgr.tick()

    _, _, err_table = logmgr.get_expr_dataset(
        "(rx_rms-rx_rms_theory)/rx_rms_theory")
    rel_max_rms_error = max(err for step, err in err_table)
    assert rel_max_rms_error < 0.01
def test_mesh_regrid():
    """Test that we are able to interpolate scalars and vectors between two
    grids using a spatial binary tree."""

    from math import pi, sin, cos

    def some_vector(discr):
        # x = discr.nodes.T.astype(discr.default_scalar_type)

        from hedge.tools import join_fields

        u1 = discr.interpolate_volume_function(lambda x, el: sin(pi * x[0]))
        u2 = discr.interpolate_volume_function(lambda x, el: sin(pi * x[1]))
        u3 = discr.interpolate_volume_function(
            lambda x, el: sin(pi * x[0] + pi * x[1]))
        u4 = discr.interpolate_volume_function(lambda x, el: cos(pi * x[0]))

        return join_fields(u1, u2, u3, u4)

    from hedge.backends import guess_run_context
    rcon = guess_run_context()
    from hedge.mesh.generator import make_centered_regular_rect_mesh
    refine = 4

    mesh = make_centered_regular_rect_mesh((-1, -1), (2, 2),
                                           n=(7, 7),
                                           post_refine_factor=refine)
    discr = rcon.make_discretization(mesh, order=6)
    fields_vec = some_vector(discr)
    u = discr.interpolate_volume_function(lambda x, el: sin(x[0]))

    for el_per_axis in range(2, 4):
        for order in range(2, 4):

            mesh2 = make_centered_regular_rect_mesh(
                (-1, -1), (2, 2),
                n=(el_per_axis, el_per_axis),
                post_refine_factor=refine)
            mesh_data2 = rcon.distribute_mesh(mesh2)
            discr2 = rcon.make_discretization(mesh_data2, order=order)

            u2 = discr2.interpolate_volume_function(lambda x, el: sin(x[0]))
            fields_vec2 = some_vector(discr2)

            out = discr.get_regrid_values(u,
                                          discr2,
                                          dtype=None,
                                          use_btree=True,
                                          thresh=1e-7)
            out_vec = discr.get_regrid_values(fields_vec,
                                              discr2,
                                              dtype=None,
                                              use_btree=True,
                                              thresh=1e-7)

            diff = u2 - out
            diff_vec = fields_vec2 - out_vec

            L2_vec = discr2.norm(diff_vec)
            L2_scalar = discr2.norm(diff)

            assert L2_vec < 1e-9
            assert L2_scalar < 1e-9
示例#56
0
def main(write_output=True):
    from hedge.backends import guess_run_context
    rcon = guess_run_context(
                    #["cuda"]
                    )

    gamma = 1.4

    # at A=1 we have case of isentropic vortex, source terms 
    # arise for other values
    densityA = 2.0

    from hedge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from hedge.mesh import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 1
        mesh = make_centered_regular_rect_mesh((0,-5), (10,5), n=(9,9),
                post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4,5]:
        discr = rcon.make_discretization(mesh_data, order=order,
                        debug=[#"cuda_no_plan",
                        #"print_op_code"
                        ],
                        default_scalar_type=numpy.float64)

        from hedge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        vortex = Vortex(beta=5, gamma=gamma,
                center=[5,0],
                velocity=[1,0], densityA=densityA)
        fields = vortex.volume_interpolant(0, discr)
        sources=SourceTerms(beta=5, gamma=gamma,
                center=[5,0],
                velocity=[1,0], densityA=densityA)

        from hedge.models.gas_dynamics import (
                GasDynamicsOperator, GammaLawEOS)
        from hedge.mesh import TAG_ALL

        op = GasDynamicsOperator(dimensions=2,
                mu=0.0, prandtl=0.72, spec_gas_const=287.1, 
                equation_of_state=GammaLawEOS(vortex.gamma),
                bc_inflow=vortex, bc_outflow=vortex, bc_noslip=vortex,
                inflow_tag=TAG_ALL, source=sources)

        euler_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print "---------------------------------------------"
            print "order %d" % order
            print "---------------------------------------------"
            print "#elements=", len(mesh.elements)

        # limiter setup -------------------------------------------------------
        from hedge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, gamma, 2, op)

        # time stepper --------------------------------------------------------
        from hedge.timestep import SSPRK3TimeStepper, RK4TimeStepper
        #stepper = SSPRK3TimeStepper(limiter=limiter)
        #stepper = SSPRK3TimeStepper()
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from pytools.log import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        t = 0

        #fields = limiter(fields)

        try:
            from hedge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=.1,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: 0.4*op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 1 == 0 and write_output:
                #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    true_fields = vortex.volume_interpolant(t, discr)

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                                #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                                #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                                #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                                #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                                #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                                #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                ("p", "0.4*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = vortex.volume_interpolant(t, discr)
            l2_error = discr.norm(fields-true_fields)
            l2_error_rho = discr.norm(op.rho(fields)-op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields)-op.e(true_fields))
            l2_error_rhou = discr.norm(op.rho_u(fields)-op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields)-op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error_rho)
            print
            print eoc_rec.pretty_print("P.Deg.", "L2 Error")

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()
示例#57
0
    def test_cuda_volume_quadrature():
        from hedge.mesh.generator import make_rect_mesh
        mesh = make_rect_mesh(a=(-1, -1), b=(1, 1), max_area=0.08)

        from hedge.backends import guess_run_context
        cpu_rcon = guess_run_context(['jit'])
        gpu_rcon = guess_run_context(['cuda'])

        order = 4
        quad_min_degrees = {"quad": 3 * order}

        cpu_discr, gpu_discr = [
            rcon.make_discretization(mesh,
                                     order=order,
                                     default_scalar_type=numpy.float64,
                                     debug=[
                                         "cuda_no_plan",
                                         "cuda_no_microblock",
                                     ],
                                     quad_min_degrees=quad_min_degrees)
            for rcon in [cpu_rcon, gpu_rcon]
        ]

        from math import sin, cos

        def f(x, el):
            return sin(x[0]) * cos(x[1])

        cpu_field, gpu_field = [
            discr.interpolate_volume_function(f)
            for discr in [cpu_discr, gpu_discr]
        ]

        def make_optemplate():
            from hedge.optemplate.operators import QuadratureGridUpsampler
            from hedge.optemplate import Field, make_stiffness_t

            u = Field("u")
            qu = QuadratureGridUpsampler("quad")(u)

            return make_stiffness_t(2)[0](Field("intercept")(qu))

        saved_vectors = []

        def intercept(x):
            saved_vectors.append(x)
            return x

        for discr in [cpu_discr, gpu_discr]:
            discr.add_function("intercept", intercept)

        opt = make_optemplate()
        cpu_bound, gpu_bound = [
            discr.compile(make_optemplate())
            for discr in [cpu_discr, gpu_discr]
        ]

        cpu_result = cpu_bound(u=cpu_field)
        gpu_result = gpu_bound(u=gpu_field)

        cpu_ivec, gpu_ivec = saved_vectors
        gpu_ivec_on_host = gpu_ivec.get()[gpu_discr._gpu_volume_embedding(
            "quad")]
        ierr = cpu_ivec - gpu_ivec_on_host
        assert la.norm(ierr) < 5e-15

        gpu_result_on_host = gpu_discr.convert_volume(gpu_result, kind="numpy")
        err = cpu_result - gpu_result_on_host
        assert la.norm(err) < 2e-14

        cpu_discr.close()
        gpu_discr.close()