def parse_arguments(arguments: List[str] = None): parser = argparse.ArgumentParser(description=__doc__) subparsers = parser.add_subparsers(title="Model", description="") # -- * -- Common Arguments & Each Model's Arguments -- * -- CNNModel.add_arguments(parser, default_type="matting") matting_nets.MattingNetModel.add_arguments(parser) for class_name in matting_nets._available_nets: subparser = subparsers.add_parser(class_name) subparser.add_argument("--model", default=class_name, type=str, help="DO NOT FIX ME") add_matting_net_arguments = eval( "matting_nets.{}.add_arguments".format(class_name)) add_matting_net_arguments(subparser) Evaluator.add_arguments(parser) Base.add_arguments(parser) DataWrapperBase.add_arguments(parser) MattingDataWrapper.add_arguments(parser) MetricManagerBase.add_arguments(parser) args = parser.parse_args(arguments) model_arguments = utils.get_subparser_argument_list(parser, args.model) args.model_arguments = model_arguments return args
def parse_arguments(arguments: List[str] = None): parser = argparse.ArgumentParser(description=__doc__) subparsers = parser.add_subparsers(title="Model", description="") TFModel.add_arguments(parser) audio_nets.AudioNetModel.add_arguments(parser) for class_name in audio_nets._available_nets: subparser = subparsers.add_parser(class_name) subparser.add_argument("--model", default=class_name, type=str, help="DO NOT FIX ME") add_audio_net_arguments = eval( f"audio_nets.{class_name}.add_arguments") add_audio_net_arguments(subparser) DataWrapperBase.add_arguments(parser) AudioDataWrapper.add_arguments(parser) Base.add_arguments(parser) TrainerBase.add_arguments(parser) SingleLabelAudioTrainer.add_arguments(parser) MetricManagerBase.add_arguments(parser) args = parser.parse_args(arguments) return args
def parse_arguments(arguments: List[str] = None): parser = argparse.ArgumentParser(description=__doc__) subparsers = parser.add_subparsers(title="Model", description="") # -- * -- Common Arguments & Each Model's Arguments -- * -- CNNModel.add_arguments(parser, default_type="matting") matting_nets.MattingNetModel.add_arguments(parser) for class_name in matting_nets._available_nets: subparser = subparsers.add_parser(class_name) subparser.add_argument("--model", default=class_name, type=str, help="DO NOT FIX ME") add_matting_net_arguments = eval( f"matting_nets.{class_name}.add_arguments") add_matting_net_arguments(subparser) # -- * -- Parameters & Options for MattingTrainer -- * -- TrainerBase.add_arguments(parser) MattingTrainer.add_arguments(parser) Base.add_arguments(parser) DataWrapperBase.add_arguments(parser) MattingDataWrapper.add_arguments(parser) MetricManagerBase.add_arguments(parser) # -- Parse arguments args = parser.parse_args(arguments) # Hack!!! subparser's arguments and dynamically add it to args(Namespace) # it will be used for convert.py model_arguments = utils.get_subparser_argument_list(parser, args.model) args.model_arguments = model_arguments return args
def __init__(self, model, session, args, dataset, dataset_name, name): self.log = get_logger(name) self.model = model self.session = session self.args = args self.dataset = dataset self.dataset_name = dataset_name if Path(self.args.checkpoint_path).is_dir(): latest_checkpoint = tf.train.latest_checkpoint( self.args.checkpoint_path) if latest_checkpoint is not None: self.args.checkpoint_path = latest_checkpoint self.log.info( f"Get latest checkpoint and update to it: {self.args.checkpoint_path}" ) self.watch_path = self._build_watch_path() self.variables_to_restore = Base.get_variables_to_restore( args=self.args, log=self.log, debug=False) self.session.run(tf.global_variables_initializer()) self.session.run(tf.local_variables_initializer()) self.ckpt_loader = Ckpt( session=session, variables_to_restore=self.variables_to_restore, include_scopes=args.checkpoint_include_scopes, exclude_scopes=args.checkpoint_exclude_scopes, ignore_missing_vars=args.ignore_missing_vars, )
"logger": log, } for ckpt_path in ckpt_iterator(evaluator.watch_path, **kwargs): log.info(f"[watch] {ckpt_path}") evaluator.evaluate_once(ckpt_path) else: raise ValueError(f"Undefined valid_type: {args.valid_type}") if __name__ == "__main__": parser = argparse.ArgumentParser(description=__doc__) subparsers = parser.add_subparsers(title="Model", description="") Base.add_arguments(parser) Evaluator.add_arguments(parser) DataWrapperBase.add_arguments(parser) AudioDataWrapper.add_arguments(parser) TFModel.add_arguments(parser) audio_nets.AudioNetModel.add_arguments(parser) MetricManagerBase.add_arguments(parser) for class_name in audio_nets._available_nets: subparser = subparsers.add_parser(class_name) subparser.add_argument("--model", default=class_name, type=str, help="DO NOT FIX ME") add_audio_arguments = eval("audio_nets.{}.add_arguments".format(class_name)) add_audio_arguments(subparser) args = parser.parse_args()