def predict(self, frame):
     #frame = cv2.resize(frame, (224, 224))
     frame = image_utils.img_to_array(frame)
     frame = np.expand_dims(frame, axis=0)
     frame = preprocess_input(frame)
     preds = self.model.predict(frame)
     return decode_predictions_custom(preds)[0][0]
示例#2
0
    def predict(self, frame):
        image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB).astype(np.float32)
        #image = image.transpose((2, 0, 1))
        image = image.reshape((1, ) + image.shape)

        image = preprocess_input(image)
        preds = self.model.predict(image)
        return decode_predictions_custom(preds)[0][0]
示例#3
0
    def predict(self, frame):
        imag = image.img_to_array(frame)
        imag = cv2.resize(imag,(224,224))
        imag = np.expand_dims(imag,axis=0)
        imag = preprocess_input(imag)

        imag = imag/255
        preds = self.model.predict(imag)
        return decode_predictions_custom(preds)[0]
示例#4
0
def model_prediction(test_image_path):
    test_image = image_preprocess(test_image_path)
    y_prob = rbc_model.predict(test_image)
    predictions = decode_predictions_custom(y_prob)
    return predictions
    while frame_number < video_length:
        cap.set(1, frame_number)
        ret, frame = cap.read()
        cv2.resize(frame, (224, 224))
        # Load the image using Keras helper ultility
        print("[INFO] loading and preprocessing image...")
        image = cv2.resize(frame, (224, 224))
        image = image_utils.img_to_array(image)

        # Convert (3, 224, 224) to (1, 3, 224, 224)
        # Here "1" is the number of images passed to network
        # We need it for passing batch containing serveral images in real project
        image = np.expand_dims(image, axis=0)
        image = preprocess_input(image)

        # Classify the image
        print("[INFO] classifying image...")
        preds = model.predict(image)
        (inID, label, prob) = decode_predictions_custom(preds)[0][0]

        # Display the predictions
        print("RBC ID: {}, Label: {}, Prob: {}".format(inID, label, prob))
        cv2.putText(frame, "Label: {}, Prob: {}".format(label, prob), (10, 30),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
        cv2.imshow("Classification", frame)
        cv2.waitKey(0)
        frame_number += 1
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
cv2.destroyAllWindows()
sys.exit()