示例#1
0
# -*- coding: utf-8 -*-
"""
Created on Sat Apr 20 14:16:19 2019

@author: qinzhen
"""

import helper as hlp

#Step1 产生数据
#参数
rad = 10
thk = 5
sep = 5

#产生数据
X, y = hlp.generatedata(rad, thk, sep, 100)

knn = hlp.KNeighborsClassifier_(1)
knn.fit(X, y)
hlp.draw(X, y, knn)

knn = hlp.KNeighborsClassifier_(3)
knn.fit(X, y)
hlp.draw(X, y, knn)
示例#2
0
#!/usr/bin/env python
# -*- coding=utf-8 -*-

from config import VIDEO_ID, NUM_WINNERS
from helper import get_commenters, draw, get_beijing_time

if __name__ == '__main__':
    print("北京时间: {}".format(get_beijing_time()))
    with open("cookies.txt", "r") as f:
        raw = f.read().strip()
        cookies = dict(cookies_are=raw)
    followed, not_followed = get_commenters(VIDEO_ID, cookies)
    pool = set(followed.keys())
    winners = draw(pool, NUM_WINNERS)
    print("*************************************")
    print("抽奖结果: ")
    for i in range(len(winners)):
        print("第{}位获奖观众: {} - https://space.bilibili.com/{}".format(
            i + 1, followed[winners[i]], winners[i]))
示例#3
0
# -*- coding: utf-8 -*-
"""
Created on Thu May  2 09:25:37 2019

@author: qinzhen
"""

import numpy as np
import helper as hlp

X = np.array([[0, 0], [0, 1], [5, 5]]).astype("float")
y = np.array([1, 1, -1])
#(a)
knn = hlp.KNeighborsClassifier_(1)
knn.fit(X, y)
hlp.draw(X, y, knn)

#(b)
scaler = hlp.StandardScaler_()
X1 = scaler.fit_transform(X)
knn = hlp.KNeighborsClassifier_(1)
knn.fit(X1, y)

hlp.draw(X, y, knn, flag=2, preprocess=scaler)

#(c)
pca = hlp.PCA_(1)
pca.fit(X)
X2 = pca.transform(X)
knn = hlp.KNeighborsClassifier_(1)
knn.fit(X2, y)
示例#4
0
pool = set([i for i in range(TEST_POOL_SIZE)])


def test_config_params():
    if TEST_POOL_SIZE <= 0 or TEST_WINNERS <= 0 or TEST_EXPERIMENTS <= 0:
        print("测试参数设定错误,各项测试参数均应大于零")
        raise ValueError
    if TEST_POOL_SIZE < TEST_WINNERS:
        print("测试参数设定错误,抽奖人数应小于等于奖池人数")
        raise ValueError


if __name__ == '__main__':
    try:
        test_config_params()
    except ValueError:
        sys.exit(1)
    print("测试开始...")
    print("将进行{}次实验,每次抽取{}名获奖观众".format(TEST_EXPERIMENTS, TEST_WINNERS))
    mean = TEST_EXPERIMENTS * TEST_WINNERS // TEST_POOL_SIZE
    print("理想状况下,每位观众被抽中次数应接近{}".format(mean))
    results = {}
    for i in range(TEST_EXPERIMENTS):
        result = draw(pool, TEST_WINNERS)
        for key in result:
            results[key] = results.get(key, 0) + 1
    print("实验结束,结果如下:")
    print("观众最少被抽中{}次,最多被抽中{}次".format(min(results.values()),
                                       max(results.values())))
示例#5
0
"""
Created on Sat Apr 20 12:48:23 2019

@author: qinzhen
"""

#(a)
import numpy as np
import helper as hlp

X = np.array([[1, 0], [0, 1], [0, -1], [-1, 0], [0, 2], [0, -2], [-2, 0]])
y = np.array([-1, -1, -1, -1, 1, 1, 1])

knn = hlp.KNeighborsClassifier_(1)
knn.fit(X, y)
hlp.draw(X, y, knn)

knn = hlp.KNeighborsClassifier_(3)
knn.fit(X, y)
hlp.draw(X, y, knn)

#(b)
#特征转换
Z = np.c_[np.sqrt(X[:, 0]**2 + X[:, 1]**2),
          np.arctan(X[:, 1] / (X[:, 0] + 10**(-8)))]
knn = hlp.KNeighborsClassifier_(1)
knn.fit(Z, y)
hlp.draw(X, y, knn, flag=0)

knn = hlp.KNeighborsClassifier_(3)
knn.fit(Z, y)
示例#6
0
文件: main.py 项目: iCode18/HangMan
     print("You had this char before")
     for item in hangedPortion:
         if (len(item) > 0):
             print(item)
 else:
     choosed.append(char)
     if (char in word):
         indexList = helper.find(word, char)
         for i in indexList:
             tempGuess[i] = char
         helper.newLine()
         if ('_' not in tempGuess):
             helper.clear('You won!!!')
             print('The word was ' + word)
             helper.newLine()
             helper.draw(notHanged)
             helper.newLine()
             break
         else:
             helper.clear()
             status(2)
             for item in hangedPortion:
                 if (len(item) > 0):
                     print(item)
     else:
         wrongs -= 1
         helper.clear()
         status(1)
         print('Wrong. You are left {} shots.'.format(wrongs))
         if (len(hangedgrad) > 1):
             hangedPortion.append(hangedgrad.pop())
示例#7
0
def main():
    # cap_img = cv2.imread('Images/Test_Markers/7.jpeg')
    camera_parameters, dist = he.camera_calibration('Images/Calibration')
    dir_name = os.getcwd()
    obj = OBJ(os.path.join(dir_name, 'Models/fox/fox.obj'), swapyz=True)
    model_list = he.create_list('Images')
    model_keypoints = he.find_model_keypoints(model_list)

    # print('b')
    if not args.problem:
        cap = cv2.VideoCapture(0)
        while True:
            # read the current frame
            ret, frame = cap.read()
            if not ret:
                print("Unable to capture video")
                return
            cnt = None
            temp = he.find_marker(he.convert2grayscale(frame), model_list,
                                  model_keypoints, camera_parameters, dist)
            if temp is not None:
                cnt, homographies, models = temp
            # compute Homography if enough matches are found
            if cnt is not None:
                # if a valid homography matrix was found render cube on model plane
                for x, h, m in zip(cnt, homographies, models):
                    try:
                        projection = he.projection_matrix(camera_parameters, h)

                        frame = he.render(frame, obj, projection, m, False)

                        # rect = cnt[0]
                        # pseudo_model = h.crop_img(frame.copy(), rect)
                        # r_p, c_p = pseudo_model.shape[0], pseudo_model.shape[1]
                        # pts = [x[0] for x in rect]
                        # pts2 = [[0, 0], [0, r_p], [c_p, r_p], [c_p, 0]]
                        # projection = cv2.getPerspectiveTransform(pts, pts2)
                        break
                    except:
                        pass
                # draw first 10 matches.
                if args.rectangle:
                    if cnt is not None:
                        for x in cnt:
                            x = he.convert_to_ndarray(x)
                            cv2.drawContours(frame, [x], -1, (0, 255, 0), 3)

                            points_dum = np.array([[[0, 0, 0]], [[100, 0, 0]],
                                                   [[0, 100, 0]], [[0, 0,
                                                                    100]]])

                            points_dum = np.float32(
                                [np.float32(p) for p in points_dum])
                            # print(axis)
                            newpts = cv2.perspectiveTransform(
                                points_dum, projection)

                            cap_img = he.draw(
                                frame, newpts[0][0],
                                [newpts[1][0], newpts[2][0], newpts[3][0]])
                            break
                # show result
            else:
                print('No marker found')

            cv2.imshow('frame', frame)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

        cap.release()

    elif args.problem:
        # print('c')
        no = input('Enter image no. to process: ')
        # img nos -
        cap_img = cv2.imread('Images/Test_Markers/Prob2/' + str(no) + '.jpeg')
        camera_parameters, dist = he.camera_calibration('Images/Calibration')
        model_list = he.create_list('Images')
        model_keypoints = he.find_model_keypoints(model_list)
        cnt = None
        temp = he.find_marker(he.convert2grayscale(cap_img), model_list,
                              model_keypoints, camera_parameters, dist)
        if temp is not None:
            cnt, homographies, models = temp
        cnt = [cnt[1], cnt[0]]
        homographies = [homographies[1], homographies[0]]
        models = [models[1], models[0]]
        if cnt is not None:
            if (len(cnt) == 2):
                ro1, co1 = models[0].shape
                ro2, co2 = models[1].shape

                proj1 = he.projection_matrix(camera_parameters,
                                             homographies[0])
                proj2 = he.projection_matrix(camera_parameters,
                                             homographies[1])
                points1 = np.array([[[co1 / 2, ro1 / 2, 0]]])
                points1 = np.float32([np.float32(p) for p in points1])
                origin1 = np.array(
                    cv2.perspectiveTransform(points1, proj1)[0][0])

                points2 = np.array([[[0, 0, 0]], [[100, 0, 0]], [[0, 100, 0]],
                                    [[0, 0, 100]]])
                points2 = np.float32([np.float32(p) for p in points2])
                axes2 = cv2.perspectiveTransform(points2, proj2)
                origin2 = axes2[0][0]
                ptz = axes2[3][0]

                ######
                if args.rectangle:
                    projection = proj1
                    points_dum = np.array([[[0, 0, 0]], [[100, 0, 0]],
                                           [[0, 100, 0]], [[0, 0, 100]]])
                    points_dum = np.float32(
                        [np.float32(p) for p in points_dum])
                    newpts = cv2.perspectiveTransform(points_dum, projection)

                    cap_img = he.draw(
                        cap_img, newpts[0][0],
                        [newpts[1][0], newpts[2][0], newpts[3][0]])

                    projection = proj2
                    points_dum = np.array([[[0, 0, 0]], [[100, 0, 0]],
                                           [[0, 100, 0]], [[0, 0, 100]]])
                    points_dum = np.float32(
                        [np.float32(p) for p in points_dum])
                    newpts = cv2.perspectiveTransform(points_dum, projection)

                    cap_img = he.draw(
                        cap_img, newpts[0][0],
                        [newpts[1][0], newpts[2][0], newpts[3][0]])
                ######

                origin2 = np.array(origin2)

                origin1_x = origin1[0]
                origin1_y = origin1[1]
                origin2_x = origin2[0]
                ptz_x = ptz[0]
                origin2_y = origin2[1]
                ptz_y = ptz[1]
                moving_slope = (ptz_y - origin2_y) / (ptz_x - origin2_x)
                # moving_slope = (origin2_y-origin1_y)/(origin2_x-origin1_x)
                moving_positive = origin1 + STEP_SIZE * \
                    np.array([1, moving_slope])
                moving_negative = origin1 - STEP_SIZE * \
                    np.array([1, moving_slope])
                distance_pos = np.linalg.norm(origin2 - moving_positive)
                distance_neg = np.linalg.norm(origin2 - moving_negative)
                if (distance_pos < distance_neg):
                    counter = 0
                    old_distance = math.inf
                    while True:
                        print('Slope:' + str(moving_slope))
                        frame = cap_img.copy()
                        moving_positive = origin1 + counter * STEP_SIZE * \
                            np.array([1, moving_slope])
                        new_distance = np.linalg.norm(origin2 -
                                                      moving_positive)
                        print('new:' + str(new_distance))
                        print('old:' + str(old_distance))
                        if (new_distance > old_distance):
                            print('break')
                            break
                        old_distance = new_distance
                        counter += 1
                        shift = moving_positive - origin1
                        frame = he.render(frame, obj, proj1, models[0], False,
                                          shift[0], shift[1])
                        print(shift)
                        cv2.imshow('Moving_obj', frame)
                        cv2.waitKey(1)
                else:
                    counter = 0
                    old_distance = math.inf
                    while True:
                        print('Slope:' + str(moving_slope))
                        frame = cap_img.copy()
                        moving_negative = origin1 - counter * STEP_SIZE * \
                            np.array([1, moving_slope])
                        new_distance = np.linalg.norm(origin2 -
                                                      moving_negative)
                        print('new:' + str(new_distance))
                        print('old:' + str(old_distance))
                        if (new_distance > old_distance):
                            print('break')
                            break
                        old_distance = new_distance
                        counter += 1
                        shift = moving_negative - origin1
                        frame = he.render(frame, obj, proj1, models[0], False,
                                          shift[0], shift[1])
                        print(shift)
                        cv2.imshow('Moving_obj', frame)
                        cv2.waitKey(1)
            else:
                print('Less than 2 Markers Found')
    cv2.destroyAllWindows()
    return 0
示例#8
0
            y_cd.append(-1)
        else:
            break

    return np.array(X_cd), np.array(y_cd)


#### (b)
n = 1000
X, y = hlp.Data(n, 1, scale=0.5)
plt.scatter(X[:, 0], X[:, 1], edgecolor='k', c=y)
plt.show()
#原始数据的分类结果
nn = hlp.KNeighborsClassifier_(1)
nn.fit(X, y)
hlp.draw(X, y, nn, n=500, flag=1)

#### CNN1
#condense data的分类结果
X_cd, y_cd = CNN1(X, y)
nn = hlp.KNeighborsClassifier_(1)
nn.fit(X_cd, y_cd)
hlp.draw(X_cd, y_cd, nn, n=500, flag=1)

#### CNN2
#condense data的分类结果
X_cd, y_cd = CNN2(X, y)
nn = hlp.KNeighborsClassifier_(1)
nn.fit(X_cd, y_cd)
hlp.draw(X_cd, y_cd, nn, n=500, flag=1)
'''
示例#9
0
y_test[y_test != 1] = -1

#### (b)
#训练模型
nn = hlp.KNeighborsClassifier_(3)
nn.fit(X_train, y_train)
y_test_pred = nn.predict(X_test)
y_train_pred = nn.predict(X_train)

#计算错误率
ein = np.mean(y_train != y_train_pred)
etest = np.mean(y_test != y_test_pred)
print("Ein of 3-NN is {}".format(ein))
print("Etest of 3-NN is {}".format(etest))
#作图
hlp.draw(X_train, y_train, nn, n=500, flag=1)

#### (c)
X_cd, y_cd = hlp.CNN(X_train, y_train, k=3)
#训练模型
nn = hlp.KNeighborsClassifier_(3)
nn.fit(X_cd, y_cd)
y_test_pred = nn.predict(X_test)
y_train_pred = nn.predict(X_train)

#计算错误率
ein = np.mean(y_train != y_train_pred)
etest = np.mean(y_test != y_test_pred)
print("Ein of C-NN is {}".format(ein))
print("Etest of C-NN is {}".format(etest))
#作图