示例#1
0
def get_errors(penalty=0):


    #Build network.
    input_layer = lasagne.layers.InputLayer((None,d), name="input_layer")
    output_layer = lasagne.layers.DenseLayer(incoming=input_layer,num_units=1, name="output_layer", nonlinearity=None)

    #Build cost and symbolic variables.
    X = input_layer.input_var
    y = theano.tensor.matrix("y")
    prediction = lasagne.layers.get_output(output_layer)
    hard_prediction = theano.tensor.round(prediction)
    mse = theano.tensor.mean((y-prediction)**2)
    accuracy = theano.tensor.mean(theano.tensor.eq(y,hard_prediction))
    L1_penalty = penalty*lasagne.regularization.regularize_layer_params(output_layer, lasagne.regularization.l1)
    cost = mse+L1_penalty
    lower_index, upper_index = theano.tensor.lscalar("lower_index"), theano.tensor.lscalar("upper_index")

    #Get updates
    learning_rate = 0.01
    updates = lasagne.updates.sgd(loss_or_grads=cost, params = lasagne.layers.get_all_params(output_layer),
                                  learning_rate=learning_rate)

    #Compile functions.
    train_foo = theano.function(inputs=[lower_index,upper_index],updates=updates,
                                givens={X:train_X[lower_index:upper_index,:],
                                        y:train_y[lower_index:upper_index,:]})

    get_cost = theano.function(inputs=[X,y], outputs=mse)
    get_acc = theano.function(inputs=[X,y], outputs=accuracy)

    #Training time.

    n_epochs = 10000
    mini_batch_size = 3000
    costs = []
    for epoch in range(n_epochs):
        current_cost = get_cost(val_X.get_value(borrow=True), val_y.get_value(borrow=True))
        costs.append(current_cost)
        a = get_acc(val_X.get_value(borrow=True), val_y.get_value(borrow=True))
        print "Epoch: %s, Validation MSE: %s Accuracy: %s" % (epoch, current_cost, a)
        for index in range(0,N,mini_batch_size ):
            train_foo(index,index+mini_batch_size)

    return costs
    #Save results.
    save = False
    if save:
        W = output_layer.W.get_value()
        plot_path  = "/home/harri/Dropbox/Work/CDT/DDS/weights.png"
        helper.plot_image(W, save_path=plot_path)
        params = {"W":W, "b":output_layer.b.get_value()}
        pickle_path = "/home/harri/Dropbox/Work/CDT/DDS/params.pkl"
        with open(pickle_path, "wb") as param_file:
            cp.dump(params, param_file)
    else:
        W = output_layer.W.get_value()
        helper.plot_image(W)
    def attack(self, img, model, target=None, pixel_count=1, 
            maxiter=75, popsize=400, verbose=False, plot=False):
        # Change the target class based on whether this is a targeted attack or not
        targeted_attack = target is not None
        target_class = target if targeted_attack else self.y_test[img,0]
        
        # Define bounds for a flat vector of x,y,r,g,b values
        # For more pixels, repeat this layout
        dim_x, dim_y = self.dimensions
        bounds = [(0,dim_x), (0,dim_y), (0,256), (0,256), (0,256)] * pixel_count
        
        # Population multiplier, in terms of the size of the perturbation vector x
        popmul = max(1, popsize // len(bounds))
        
        # Format the predict/callback functions for the differential evolution algorithm
        predict_fn = lambda xs: self.predict_classes(
            xs, self.x_test[img], target_class, model, target is None)
        callback_fn = lambda x, convergence: self.attack_success(
            x, self.x_test[img], target_class, model, targeted_attack, verbose)
        
        # Call Scipy's Implementation of Differential Evolution
        attack_result = differential_evolution(
            predict_fn, bounds, maxiter=maxiter, popsize=popmul,
            recombination=1, atol=-1, callback=callback_fn, polish=False)

        # Calculate some useful statistics to return from this function
        attack_image = helper.perturb_image(attack_result.x, self.x_test[img])[0]
        prior_probs = model.predict(np.array([self.x_test[img]]))[0]
        predicted_probs = model.predict(np.array([attack_image]))[0]
        predicted_class = np.argmax(predicted_probs)
        actual_class = self.y_test[img,0]
        success = predicted_class != actual_class
        cdiff = prior_probs[actual_class] - predicted_probs[actual_class]

        # Show the best attempt at a solution (successful or not)
        if plot:
            helper.plot_image(attack_image, actual_class, self.class_names, predicted_class)

        return [model.name, pixel_count, img, actual_class, predicted_class, success, cdiff, prior_probs, predicted_probs, attack_result.x]
keras.backend.set_learning_phase(0)
# (x_train, y_train), (x_test, y_test) = cifar10.load_data()
class_names = [
    'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
    'ship', 'truck'
]
images_id = 2
images, labels = foolbox.utils.samples(dataset='cifar10',
                                       index=0,
                                       batchsize=10)
images = np.array([img_to_array(original) for original in images
                   ])  # Convert the PIL image to a numpy array

# 绘画干净图片
helper.plot_image(images[images_id])
# print(np.shape(images))
# print(np.shape(labels))
#
# print(images[images_id][27,22])
# print(images[images_id][21][24][1])
# print(images[images_id][22][7][2])

#自定义网络
# lenet = LeNet()
# resnet = ResNet()
# resnet.train()
model_filename = 'networks/models/resnet.h5'
resnet = load_model(model_filename)

models = [resnet]
示例#4
0
def single_pixel_attack(images,
                        labels,
                        class_names,
                        img_id,
                        model,
                        target=None,
                        pixel_count=1,
                        maxiter=75,
                        popsize=400,
                        verbose=False,
                        plot=False,
                        dimensions=(32, 32)):
    # Change the target class based on whether this is a targeted attack or not
    targeted_attack = target is not None
    target_class = target if targeted_attack else labels[img_id, 0]

    ack = PixelAttacker([model], (images, labels), class_names)

    # Define bounds for a flat vector of x,y,r,g,b values
    # For more pixels, repeat this layout
    dim_x, dim_y = dimensions
    bounds = [(0, dim_x), (0, dim_y), (0, 256), (0, 256),
              (0, 256)] * pixel_count

    # Population multiplier, in terms of the size of the perturbation vector x
    popmul = max(1, popsize // len(bounds))

    # Format the predict/callback functions for the differential evolution algorithm
    def predict_fn(xs):
        return ack.predict_classes(xs, images[img_id], target_class, model,
                                   target is None)

    def callback_fn(x, convergence):
        return ack.attack_success(x, images[img_id], target_class, model,
                                  targeted_attack, verbose)

    # Call Scipy's Implementation of Differential Evolution
    attack_result = differential_evolution(predict_fn,
                                           bounds,
                                           maxiter=maxiter,
                                           popsize=popmul,
                                           recombination=1,
                                           atol=-1,
                                           callback=callback_fn,
                                           polish=False)

    # Calculate some useful statistics to return from this function
    attack_image = helper.perturb_image(attack_result.x, images[img_id])[0]
    prior_probs = model.predict(np.array([images[img_id]]))[0]
    predicted_probs = model.predict(np.array([attack_image]))[0]
    predicted_class = np.argmax(predicted_probs)
    actual_class = labels[img_id, 0]
    success = predicted_class != actual_class
    cdiff = prior_probs[actual_class] - predicted_probs[actual_class]

    # Show the best attempt at a solution (successful or not)
    if plot:
        helper.plot_image(attack_image, actual_class, class_names,
                          predicted_class)

    return [
        attack_image, model.name, pixel_count, img_id, actual_class,
        predicted_class, success, cdiff, prior_probs, predicted_probs,
        attack_result.x
    ]
示例#5
0
filenames = ['data/balloon.jpg']

# The labels of each corresponding image
labels = [word_to_class['balloon']]
# Download all image files
# for url, filename in zip(urls, filenames):
#     print('Downloading', filename)
#     helper.download_from_url(url, filename)

originals = [
    load_img(filename, target_size=(224, 224)) for filename in filenames
]  # Load an image in PIL format
images = np.array([img_to_array(original) for original in originals
                   ])  # Convert the PIL image to a numpy array

helper.plot_image(images[0])

#加载模型
model = keras.applications.ResNet50()

#processed_images = preprocess_input(images.copy()) # Prepare the image for the model
processed_images = images
predictions = model.predict(
    processed_images)  # Get the predicted probabilities for each class
label = decode_predictions(
    predictions)  # Convert the probabilities to class labels

print(label)

#扰动图片
pixel = np.array([112, 112, 255, 255, 0])  # pixel = x,y,r,g,b
示例#6
0
    def attack(self,
               img,
               model,
               target=None,
               pixel_count=1,
               maxiter=75,
               popsize=400,
               verbose=False,
               plot=False):
        # Change the target class based on whether this is a targeted attack or not
        targeted_attack = target is not None
        target_class = target if targeted_attack else self.y_test[img, 0]
        # print("----------------------------------------------------",self.y_test[img,0])
        # print("++++++++++++++++++++++++++++++++++++++++++++++++++++",target_class)
        # Define bounds for a flat vector of x,y,r,g,b values
        # For more pixels, repeat this layout
        dim_x, dim_y = self.dimensions
        # bounds = [(0,dim_x), (0,dim_y), (0,256), (0,256), (0,256)] * pixel_count
        bounds = [(0, dim_x), (0, dim_y), (0, 256)] * pixel_count

        # Population multiplier, in terms of the size of the perturbation vector x
        popmul = max(1, popsize // len(bounds))

        # Format the predict/callback functions for the differential evolution algorithm
        predict_fn = lambda xs: self.predict_classes(xs, self.x_test[
            img], target_class, model, target is None)
        # print(predict_fn)
        callback_fn = lambda x, convergence: self.attack_success(
            x, self.x_test[img], target_class, model, targeted_attack, verbose)
        # print(callback_fn)
        #print('模型的输入:',predict_fn,'类型为:',predict_fn.type)
        # Call Scipy's Implementation of Differential Evolution
        # attack_result = differential_evolution(
        #     predict_fn, bounds, maxiter=maxiter, popsize=popmul,
        #     recombination=1, atol=-1, callback=callback_fn, polish=False)
        attack_result = Random_Attack(pixel_count)

        # Calculate some useful statistics to return from this function
        attack_image = helper.perturb_image(attack_result, self.x_test[img])[0]

        # Calculate the L2 norm to represent the revise size
        L2_img = attack_image - self.x_test[img]
        L2_img = np.array(L2_img)

        L2_img = L2_img.reshape(784)
        # print(L2_img)
        L2_norm = np.sqrt(np.sum(np.square(L2_img)))

        prior_probs = model.predict(np.array([self.x_test[img]]))[0]
        # print('-----------------------_test1', prior_probs)
        predicted_probs = model.predict(np.array([attack_image]))[0]
        # print('-----------------------_test2', predicted_probs)
        predicted_class = np.argmax(predicted_probs)
        actual_class = self.y_test[img, 0]
        success = predicted_class != actual_class
        cdiff = prior_probs[actual_class] - predicted_probs[actual_class]

        # Show the best attempt at a solution (successful or not)
        if plot:
            helper.plot_image(attack_image, actual_class, self.class_names,
                              predicted_class)

        return [
            model.name, pixel_count, img, actual_class, predicted_class,
            success, cdiff, prior_probs, predicted_probs, attack_result,
            L2_norm
        ]
示例#7
0
model_filename = 'networks/models/resnet.h5'
resnet = load_model(model_filename)
models = [resnet]

#样本个数
n = 100
#成功的个数
m = 0
fmodel = foolbox.models.KerasModel(resnet, bounds=(0, 255))
# 攻击
attack_ = foolbox.v1.attacks.RandomProjectedGradientDescent(fmodel)
for images_id in range(1, 2):
    print("images_id", images_id)
    # 绘画干净图片
    helper.plot_image(images[images_id])
    # 预测干净图片的类别
    clean_image_label = np.argmax(
        resnet.predict(np.asarray([images[images_id]], dtype=np.float32)))
    print("干净图片的类别:", clean_image_label)

    adversarial = attack_(images[images_id], labels[images_id])
    # try:
    #     # 生成对抗样本
    #     adversarial = attack_(images[images_id], labels[images_id])
    # except:
    #     continue

    # 预测对抗样本的类别
    adversarial_label = np.argmax(resnet.predict(np.asarray([adversarial])))
    print("对抗样本的类比:", adversarial_label)
示例#8
0
network_stats, correct_imgs = helper.evaluate_models(models, images, labels)
correct_imgs = pd.DataFrame(
    correct_imgs, columns=['name', 'img', 'label', 'confidence', 'pred'])
network_stats = pd.DataFrame(network_stats,
                             columns=['name', 'accuracy', 'param_count'])

print(network_stats)

pixel = np.array([16, 20, 0, 255, 255])
model = resnet

image_id = 1
true_class = labels[image_id, 0]
prior_confidence = model.predict_one(images[image_id])[true_class]
confidence = helper.predict_classes(pixel, images[image_id], true_class,
                                    model)[0]

print('Confidence in true class', class_names[true_class], 'is', confidence)
print('Prior confidence was', prior_confidence)
helper.plot_image(helper.perturb_image(pixel, images[image_id])[0])

list = attack(images,
              labels,
              class_names,
              image_id,
              model,
              pixel_count=3,
              verbose=True,
              plot=True)
print(list[10])
示例#9
0
    def attack(self,
               img,
               model,
               target=None,
               pixel_count=1,
               maxiter=75,
               popsize=400,
               verbose=False,
               plot=False):
        """
        @img: index to the image you want to attack
        @model: the model to attack
        @target: the index to the target you want to aim for
        @pixel_count: how many pixels to have in your attack
        @maxiter: maximum number of iterations on optimization
        @popsize: size of the population to use at each iteration of the optimization
        @verbose: boolean, controls printing
        @plot: boolean, whether to plot the final results
        """
        # Change the target class based on whether this is a targeted attack or not
        targeted_attack = target is not None
        target_class = target if targeted_attack else self.y_test[img, 0]

        # Define bounds for a flat vector of x,y,r,g,b values
        # For more pixels, repeat this layout
        dim_x, dim_y = self.dimensions
        bounds = [(0, dim_x), (0, dim_y), (0, 256), (0, 256),
                  (0, 256)] * pixel_count

        # Population multiplier, in terms of the size of the perturbation vector x
        popmul = max(1, popsize // len(bounds))

        # Format the predict/callback functions for the differential evolution algorithm
        predict_fn = lambda xs: self.predict_classes(xs, self.x_test[
            img], target_class, model, target is None)
        callback_fn = lambda x, convergence: self.attack_success(
            x, self.x_test[img], target_class, model, targeted_attack, verbose)

        # Call Scipy's Implementation of Differential Evolution
        attack_result = differential_evolution(predict_fn,
                                               bounds,
                                               maxiter=maxiter,
                                               popsize=popmul,
                                               recombination=1,
                                               atol=-1,
                                               callback=callback_fn,
                                               polish=False)

        # Calculate some useful statistics to return from this function
        attack_image = helper.perturb_image(attack_result.x,
                                            self.x_test[img])[0]
        prior_probs = model.predict(np.array([self.x_test[img]]))[0]
        predicted_probs = model.predict(np.array([attack_image]))[0]
        predicted_class = np.argmax(predicted_probs)
        actual_class = self.y_test[img, 0]
        success = predicted_class != actual_class
        cdiff = prior_probs[actual_class] - predicted_probs[actual_class]

        # Show the best attempt at a solution (successful or not)
        if plot:
            helper.plot_image(attack_image, actual_class, self.class_names,
                              predicted_class)

        return [
            model.name, pixel_count, img, actual_class, predicted_class,
            success, cdiff, prior_probs, predicted_probs, attack_result.x
        ]
示例#10
0
    def attack(self,
               img,
               model,
               target=None,
               pixel_count=1,
               maxiter=75,
               popsize=400,
               verbose=False,
               plot=False):
        # img 只是测试图片在测试集中的index
        # Change the target class based on whether this is a targeted attack or not
        targeted_attack = target is not None
        # target_class 应该是图片属于的类
        target_class = target if targeted_attack else self.y_test[img, 0]

        # Define bounds for a flat vector of x,y,r,g,b values
        # For more pixels, repeat this layout
        dim_x, dim_y = self.dimensions
        bounds = [(0, dim_x), (0, dim_y), (0, 256)] * pixel_count

        # Population multiplier, in terms of the size of the perturbation vector x
        popmul = max(1, popsize // len(bounds))

        # Format the predict/callback functions for the differential evolution algorithm
        predict_fn = lambda xs: self.predict_classes(xs, self.x_test[
            img], target_class, model, target is None)
        callback_fn = lambda x, convergence: self.attack_success(
            x, self.x_test[img], target_class, model, targeted_attack, verbose)

        # Call Scipy's Implementation of Differential Evolution
        attack_result = differential_evolution(predict_fn,
                                               bounds,
                                               maxiter=maxiter,
                                               popsize=popmul,
                                               recombination=1,
                                               atol=-1,
                                               callback=callback_fn,
                                               polish=False)
        #
        # print(attack_result)
        # Calculate some useful statistics to return from this function
        attack_image = helper.perturb_image(attack_result.x,
                                            self.x_test[img])[0]
        prior_probs = model.predict(np.array([self.x_test[img]]))[0]
        predicted_probs = model.predict(np.array([attack_image]))[0]
        predicted_class = np.argmax(predicted_probs)
        actual_class = self.y_test[img, 0]
        success = predicted_class != actual_class
        cdiff = prior_probs[int(actual_class)] - predicted_probs[int(
            actual_class)]

        # Show the best attempt at a solution (successful or not)
        if plot:
            helper.plot_image(attack_image, actual_class, self.class_names,
                              predicted_class)

        return [
            model.name, pixel_count, img, actual_class, predicted_class,
            success, cdiff, prior_probs, predicted_probs, attack_result.x,
            attack_result.img
        ]