'Cases_Per_Million',
                                               'Deaths_Per_Million')
                                   )
        csvwriter.writeheader()
        for code in sorted(d_states_latest.keys()):
            d = d_states_latest[code]
            d['Code'] = code
            if code == 'DE-total':  # DE as last row
                d_de = dict(d)
                continue
            csvwriter.writerow(
                d
            )
        del d, code
        # add # to uncomment the DE total sum last line
        d_de['State'] = '# Deutschland'
        csvwriter.writerow(d_de)
        del d_de


d_ref_states = helper.read_ref_data_de_states()


download_new_data()
d_states_data = read_csv_to_dict()

export_data(d_states_data)
export_latest_data(d_ref_states, d_states_data)

# 1
                                       ])
            csvwriter.writeheader()
            for d in l_time_series:
                d2 = d
                gesamt = d2['Int Betten gesamt']
                belegt = d2['Int Betten belegt']
                if 'Int COVID-19 Patienten' in d2 and d2[
                        'Int COVID-19 Patienten'] != None:
                    covid = d2['Int COVID-19 Patienten']
                    d2['Prozent Int COVID-19 Patienten'] = round(
                        100 * covid / gesamt, 1)
                else:
                    d2['Int COVID-19 Patienten'] = None
                    d2['Prozent Int COVID-19 Patienten'] = None

                d2['Prozent Int Betten belegt'] = round(
                    100 * belegt / gesamt, 1)
                csvwriter.writerow(d2)


d_states_ref = helper.read_ref_data_de_states()
d_states_ref_map_name_code = {}
for code, d in d_states_ref.items():
    d_states_ref_map_name_code[d['State']] = code

fetch_betten()
fetch_covid()
calc_de_sum()
export_time_series()
export_data()