示例#1
0
def train_classifier_simple_v1(num_epochs,
                               model,
                               optimizer,
                               device,
                               train_loader,
                               valid_loader=None,
                               loss_fn=None,
                               logging_interval=100,
                               skip_epoch_stats=False):

    if loss_fn is None:
        loss_fn = F.cross_entropy

    start_time = time.time()
    for epoch in range(num_epochs):

        model.train()
        for batch_idx, (features, targets) in enumerate(train_loader):

            features = features.to(device)
            targets = targets.to(device)

            # FORWARD AND BACK PROP
            logits = model(features)
            cost = loss_fn(logits, targets)
            optimizer.zero_grad()

            cost.backward()

            # UPDATE MODEL PARAMETERS
            optimizer.step()

            # LOGGING
            if not batch_idx % logging_interval:
                print('Epoch: %03d/%03d | Batch %04d/%04d | Loss: %.4f' %
                      (epoch + 1, num_epochs, batch_idx, len(train_loader),
                       cost))

        if not skip_epoch_stats:
            model.eval()

            with torch.set_grad_enabled(False):  # save memory during inference
                print('Epoch: %03d/%03d | Train Acc.: %.3f%% |  Loss: %.3f' %
                      (epoch + 1, num_epochs,
                       compute_accuracy(model, train_loader, device),
                       compute_epoch_loss(model, train_loader, device)))

                if valid_loader is not None:
                    print(
                        'Epoch: %03d/%03d | Validation Acc.: %.3f%% |  Loss: %.3f'
                        % (epoch + 1, num_epochs,
                           compute_accuracy(model, valid_loader, device),
                           compute_epoch_loss(model, valid_loader, device)))

        print('Time elapsed: %.2f min' % ((time.time() - start_time) / 60))

    print('Total Training Time: %.2f min' % ((time.time() - start_time) / 60))
示例#2
0
def train_classifier_simple_v1(num_epochs, model, optimizer, device, 
                               train_loader, valid_loader=None, 
                               loss_fn=None, logging_interval=100, 
                               skip_epoch_stats=False):
    
    log_dict = {'train_loss_per_batch': [],
                'train_acc_per_epoch': [],
                'train_loss_per_epoch': [],
                'valid_acc_per_epoch': [],
                'valid_loss_per_epoch': []}
    
    if loss_fn is None:
        loss_fn = F.cross_entropy

    start_time = time.time()
    for epoch in range(num_epochs):

        model.train()
        for batch_idx, (features, targets) in enumerate(train_loader):

            features = features.to(device)
            targets = targets.to(device)

            # FORWARD AND BACK PROP
            logits = model(features)
            loss = loss_fn(logits, targets)
            optimizer.zero_grad()

            loss.backward()

            # UPDATE MODEL PARAMETERS
            optimizer.step()

            # LOGGING
            log_dict['train_loss_per_batch'].append(loss.item())
            
            if not batch_idx % logging_interval:
                print('Epoch: %03d/%03d | Batch %04d/%04d | Loss: %.4f'
                      % (epoch+1, num_epochs, batch_idx,
                          len(train_loader), loss))

        if not skip_epoch_stats:
            model.eval()

            
            
            with torch.set_grad_enabled(False):  # save memory during inference
                
                train_acc = compute_accuracy(model, train_loader, device)
                train_loss = compute_epoch_loss_classifier(
                    model, train_loader, loss_fn, device)
                print('***Epoch: %03d/%03d | Train. Acc.: %.3f%% | Loss: %.3f' % (
                      epoch+1, num_epochs, train_acc, train_loss))
                log_dict['train_loss_per_epoch'].append(train_loss.item())
                log_dict['train_acc_per_epoch'].append(train_acc.item())

                if valid_loader is not None:
                    valid_acc = compute_accuracy(model, valid_loader, device)
                    valid_loss = compute_epoch_loss_classifier(
                        model, valid_loader, loss_fn, device)
                    print('***Epoch: %03d/%03d | Valid. Acc.: %.3f%% | Loss: %.3f' % (
                          epoch+1, num_epochs, valid_acc, valid_loss))
                    log_dict['valid_loss_per_epoch'].append(valid_loss.item())
                    log_dict['valid_acc_per_epoch'].append(valid_acc.item())

        print('Time elapsed: %.2f min' % ((time.time() - start_time)/60))

    print('Total Training Time: %.2f min' % ((time.time() - start_time)/60))
    
    return log_dict
示例#3
0
def train_classifier_simple_v2(model,
                               num_epochs,
                               train_loader,
                               valid_loader,
                               test_loader,
                               optimizer,
                               device,
                               logging_interval=50,
                               best_model_save_path=None,
                               scheduler=None,
                               skip_train_acc=False,
                               scheduler_on='valid_acc'):

    start_time = time.time()
    minibatch_loss_list, train_acc_list, valid_acc_list = [], [], []
    best_valid_acc, best_epoch = -float('inf'), 0

    for epoch in range(num_epochs):

        model.train()
        for batch_idx, (features, targets) in enumerate(train_loader):

            features = features.to(device)
            targets = targets.to(device)

            # ## FORWARD AND BACK PROP
            logits = model(features)
            loss = torch.nn.functional.cross_entropy(logits, targets)
            optimizer.zero_grad()

            loss.backward()

            # ## UPDATE MODEL PARAMETERS
            optimizer.step()

            # ## LOGGING
            minibatch_loss_list.append(loss.item())
            if not batch_idx % logging_interval:
                print(f'Epoch: {epoch+1:03d}/{num_epochs:03d} '
                      f'| Batch {batch_idx:04d}/{len(train_loader):04d} '
                      f'| Loss: {loss:.4f}')

        model.eval()
        with torch.no_grad():  # save memory during inference
            if not skip_train_acc:
                train_acc = compute_accuracy(model,
                                             train_loader,
                                             device=device).item()
            else:
                train_acc = float('nan')
            valid_acc = compute_accuracy(model, valid_loader,
                                         device=device).item()
            train_acc_list.append(train_acc)
            valid_acc_list.append(valid_acc)

            if valid_acc > best_valid_acc:
                best_valid_acc, best_epoch = valid_acc, epoch + 1
                if best_model_save_path:
                    torch.save(model.state_dict(), best_model_save_path)

            print(f'Epoch: {epoch+1:03d}/{num_epochs:03d} '
                  f'| Train: {train_acc :.2f}% '
                  f'| Validation: {valid_acc :.2f}% '
                  f'| Best Validation '
                  f'(Ep. {best_epoch:03d}): {best_valid_acc :.2f}%')

        elapsed = (time.time() - start_time) / 60
        print(f'Time elapsed: {elapsed:.2f} min')

        if scheduler is not None:

            if scheduler_on == 'valid_acc':
                scheduler.step(valid_acc_list[-1])
            elif scheduler_on == 'minibatch_loss':
                scheduler.step(minibatch_loss_list[-1])
            else:
                raise ValueError('Invalid `scheduler_on` choice.')

    elapsed = (time.time() - start_time) / 60
    print(f'Total Training Time: {elapsed:.2f} min')

    test_acc = compute_accuracy(model, test_loader, device=device)
    print(f'Test accuracy {test_acc :.2f}%')

    return minibatch_loss_list, train_acc_list, valid_acc_list