for i in range(len(test_dataset)): image, gt_mask = test_dataset[i] images.append(image) gt_masks.append(gt_mask) images = np.stack(images) gt_masks = np.stack(gt_masks) # scale back from args.flu_scale gt_masks = np.uint8(gt_masks / args.scale * 255) pr_masks = pr_masks / args.scale * 255 pr_masks = np.uint8(np.clip(pr_masks, 0, 255)) # save prediction examples plot_fig_file = model_folder + '/pred_examples.png' nb_images = 10 plot_flu_prediction(plot_fig_file, images, gt_masks, pr_masks, nb_images) # output_dir = model_folder+'/pred_fl'; generate_folder(output_dir) # plot_set_prediction(output_dir, images, gt_masks, pr_masks) # calculate PSNR mPSNR, psnr_scores = calculate_psnr(gt_masks, pr_masks) print('PSNR: {:.4f}'.format(mPSNR)) # calculate Pearson correlation coefficient mPear, pear_scores = calculate_pearsonr(gt_masks, pr_masks) print('Pearsonr:{:.4f}'.format(mPear)) with open(model_folder + '/metric_summary.txt', 'w+') as f: # loss f.write("loss {}: {:.5}\n".format(metric.__name__, value)) # average psnr for metric, value in zip(metrics, scores[1:]):
# # maps = np.zeros(masks.shape[:-1]) # G2_map = np.logical_and(masks[:,:,:,0],masks[:,:,:,1]) # G1_map = np.logical_and(masks[:,:,:,0],np.logical_not(G2_map)) # S_map = np.logical_and(masks[:,:,:,1],np.logical_not(G2_map)) # maps = G2_map*3 + G1_map*1 + S_map*2 # map_rgb = np.stack([G1_map*255, S_map*255, G2_map*255],axis =-1).astype(np.uint8) # return maps, map_rgb # gt_MAPs, gt_MAPs_rgb = convert2map(gt_MASKs); pr_MAPs, pr_MAPs_rgb = convert2map(pr_MASKs) # plot_map_prediction(model_folder+'/pred_maps.png', images, gt_MAPs_rgb, pr_MAPs_rgb, nb_images) # save prediction examples plot_fig_file = model_folder + '/pred_examples.png' nb_images = 4 plot_flu_prediction(plot_fig_file, images, gt_masks, pr_masks, nb_images, rand_seed=6) import grant_helper_function as ghf ghf.plot_flu_prediction(model_folder + '/pred_examples_colorbar.png', images, gt_masks, pr_masks, nb_images, rand_seed=6) ghf.plot_flu_prediction2(model_folder + '/grants_fl', images, gt_masks, pr_masks,