示例#1
0
def singleshot():
    fn = str(random.randint(1, 25))
    filename = 'rt-data-io/' + fn + '.csv'
    weightFile = 'Data/weights.h5'
    predFile = 'Data/singleCSV/singlePred.h5'
    columns = [
        'stresses_full_xx', 'stresses_full_yy', 'stresses_full_xy',
        'stresses_full_xz', 'stresses_full_yz', 'stresses_full_zz'
    ]
    testFile = 'single.h5'

    dictionary = defaultdict(list)
    print('working with {},...'.format(filename.split('/')[-1]))
    data = helper_functions.csv2dict(filename)
    grid_aftershock_count = np.double(data['aftershocksyn'])
    temp = grid_aftershock_count.tolist()
    dictionary['aftershocksyn'].extend(temp)
    for column in columns:
        dictionary[column].extend(np.double(data[column]))

    columns.append('aftershocksyn')
    helper_functions.dict2HDF('single.h5', columns, dictionary)
    features_in = [
        'stresses_full_xx', 'stresses_full_yy', 'stresses_full_xy',
        'stresses_full_xz', 'stresses_full_yz', 'stresses_full_zz'
    ]

    features_out = 'aftershocksyn'
    model = helper_functions.createModel()
    model.load_weights(weightFile)
    X, y = helper_functions.loadDataFromHDF(testFile, features_in,
                                            features_out)
    y_pred = model.predict(X)
    helper_functions.writeHDF(predFile, X, y)
    auc = sklearn.metrics.roc_auc_score(y, y_pred)
    return auc
import numpy as np
import sklearn as sklearn
import helper_functions

# name of weights
weightFile = 'Data/weights.h5'
predFile = 'predicted.h5'
testFile = 'Data/testing.h5'

# name of features in our dataset
features_in = [
    'stresses_full_xx', 'stresses_full_yy', 'stresses_full_xy',
    'stresses_full_xz', 'stresses_full_yz', 'stresses_full_zz'
]

# name of label
features_out = 'aftershocksyn'

# load the model
model = helper_functions.createModel()

# load the weights and evaluate on test file
model.load_weights(weightFile)
X, y = helper_functions.loadDataFromHDF(testFile, features_in, features_out)
y_pred = model.predict(X)
helper_functions.writeHDF(predFile, X, y)
auc = sklearn.metrics.roc_auc_score(y, y_pred)
print('merged AUC on testing data set: ' + str(auc))