示例#1
0
def model_train(model,
                val_version=21,
                cross_val=0,
                nb_epoch_per_record=2,
                nb_epochs=1000,
                batch_size=120,
                input_shape=(128, 128),
                normal_proc=True):
    # here is where we really load the data
    X_train, X_val, Y_train, Y_val = load_train_data(val_version=val_version,
                                                     cross_val=cross_val,
                                                     normal_proc=normal_proc)
    # 	Y_train = Y_train*100
    # 	Y_val = Y_val*100
    # here is where we really train the model
    #	hf.train_model_multi_task(model, X_train,X_val,Y_train,Y_val, nb_epochs=nb_epochs, nb_epoch_per_record=nb_epoch_per_record, input_shape=input_shape, batch_size = batch_size, lr_max = max_lr)
    hf.train_model(model,
                   X_train,
                   X_val,
                   Y_train,
                   Y_val,
                   nb_epochs=nb_epochs,
                   nb_epoch_per_record=nb_epoch_per_record,
                   input_shape=input_shape,
                   batch_size=batch_size,
                   method='count_ception')
def regressions_checker():
    n = 240000
    d = 3
    data_range = 100

    data = np.floor(np.random.rand(n, d) * data_range)
    labels = np.floor(np.random.rand(n, 1) * data_range)
    weights = np.ones(n)

    Pset = WeightedSet(data, weights, labels)
    for solver in ["lasso", "ridge", "elastic"]:
        #########RIDGE REGRESSION#############
        clf = get_new_clf(solver)
        time_coreset, clf_coreset = coreset_train_model(Pset,
                                                        clf,
                                                        solver=solver)
        score_coreset = test_model(Pset, clf)

        clf = get_new_clf(solver)
        time_real, clf_real = train_model(Pset, clf)
        score_real = test_model(Pset, clf)
        """   
        print (" solver: {}\nscore_diff = {}\n---->coef diff = {}\n---->coreset_time = {}\n---->data time = {}".format(
            solver,
            np.abs(score_coreset - score_real),
            np.sum(np.abs(clf_real.coef_ - clf_coreset.coef_)),
            time_coreset,
            time_real))
        """
        if np.abs(score_coreset - score_real) > small_number:
            print("Not good. Error in LMS CORESET")
示例#3
0
    param.requires_grad = False

num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 10)

if use_gpu:
    model_ft = model_ft.cuda()

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.Adam(model_ft.fc.parameters(), lr=0.001)
model = train_model(model_ft,
                    dataloders,
                    dataset_sizes,
                    criterion,
                    optimizer_ft,
                    num_epochs=5,
                    use_gpu=use_gpu)

optimizer_ft = optim.Adam(model.fc.parameters(), lr=0.0001)
model = train_model(model,
                    dataloders,
                    dataset_sizes,
                    criterion,
                    optimizer_ft,
                    num_epochs=10,
                    use_gpu=use_gpu)

optimizer_ft = optim.Adam(model.fc.parameters(), lr=0.00005)
model = train_model(model,
示例#4
0
# training data selection
train_folder = experiment + '/' + 'stage' + str(stage) + '/'
train_pool_file = train_folder + 'train_pool.txt'
#unnot_pool_file = train_folder+'unnot_pool.txt'
f = open(train_pool_file)
train_pool_list = []
for line in f.readlines():
    train_pool_list.append(int(float(line.split('\n')[0])))
X_sl = X_train[train_pool_list, :, :]
Y_sl = Y_train[train_pool_list, :, :]

batch_size = int(X_train.shape[0] * 8 / 20)
# scale the ground truth by multiplying 100
Y_train = Y_train * 100
Y_val = Y_val * 100

model_name = train_folder + 'round-' + str(
    round) + '-dt-' + date + '-lr-' + str(lr) + '-scaled' + '-batch-' + str(
        batch_size) + '-v' + str(val_version) + '-ResFCN'
# model_name = '9.30-'+'lr-'+str(lr)+ '-scaled'+'-batch-'+str(batch_size)+'-v'+str(val_version)+'-FCN'
model.name = model_name
hf.train_model(model,
               X_sl,
               X_val,
               Y_sl,
               Y_val,
               nb_epochs=nb_epochs,
               nb_epoch_per_record=nb_epoch_per_record,
               input_shape=input_shape[0],
               batch_size=batch_size)
示例#5
0
import pandas as pd
import numpy as np
from helper_functions import create_X, create_y_train, train_model, predict, score

train = pd.read_csv('data/Train.csv', parse_dates=['saledate'])
test = pd.read_csv('data/Test.csv', parse_dates=['saledate'])

X_train = create_X(train)
X_test = create_X(test)
y_train = create_y_train(train)

model = train_model(X_train, y_train)

submit = predict(model, test, X_test, 'model_1')

y_test = pd.read_csv('data/do_not_open/test_soln.csv')

print(score(submit, y_test))  # final score: 0.4102042700770253
示例#6
0
=======
from helper_functions import create_X, create_y_train, train_model, predict, score
>>>>>>> 0e453a6a82a8c1a46c61f3419a174391e7c7affd

train = pd.read_csv('data/Train.csv', parse_dates=['saledate'])
test = pd.read_csv('data/Test.csv', parse_dates=['saledate'])


X_train = create_X(train)
X_test = create_X(test)
y_train = create_y_train(train)

<<<<<<< HEAD
X_train_normalized, X_test_normalized = normalize_X(X_train, X_test)

model_linear = train_model(X_train, y_train, LinearRegression())
model_ridge = train_model(X_train_normalized, y_train, Ridge())
model_lasso = train_model(X_train_normalized, y_train, Lasso(alpha=0.00005, max_iter=120000))

submit_linear = predict(model_linear, test, X_test, 'model_lin')
submit_ridge = predict(model_ridge, test, X_test_normalized, 'model_rid')
submit_lasso = predict(model_lasso, test, X_test_normalized, 'model_las')

y_test = pd.read_csv('data/do_not_open/test_soln.csv')

print('Linear: ', score(submit_linear, y_test), '; Ridge: ', score(submit_ridge, y_test), '; Lasso: ', score(submit_lasso, y_test))
# Linear:  0.40826129534246886 ; Ridge:  0.40822991882415727 ; Lasso:  0.40834486305959367
# Pick Ridge
=======
model = train_model(X_train, y_train)
示例#7
0
#get data loaders
trainloader, testloader, validationloader, train_data = hf.get_loaders(
    data_directory)

#get cat_to_name
with open('cat_to_name.json', 'r') as f:
    cat_to_name = json.load(f)

# Building and training the classifier #################
model = getattr(models, arch)(pretrained=True)
for param in model.parameters():
    param.requires_grad = False

#Define a new, untrained feed-forward network as a classifier, using ReLU activations and dropout
model, criterion, optimizer = hf.define_untrained_network(
    model, model.classifier[0].in_features, hidden_units, len(cat_to_name),
    learning_rate, device)  #input_size, hidden_sizes, output_size

# Train Model
trained_model = hf.train_model(model, epochs, trainloader, validationloader,
                               device, optimizer, criterion)

# Test Trained Model
hf.test_trained_model(trained_model, testloader, criterion, device)

# Save
hf.save_model_architecture_needs(train_data, epochs, optimizer, model,
                                 save_dir, arch,
                                 'model_architecture_needs.pth')
hf.save_model_checkpoint(model, save_dir, 'model_checkpoint.pth')
示例#8
0
parsed_results = argparser.parse_args()

data_directory = parsed_results.data_directory
checkpoint = parsed_results.save_path
pretrained_model = parsed_results.pretrained_model
lr = float(parsed_results.lr)
hidden_units = int(parsed_results.hidden_units)                       
epochs = int(parsed_results.num_epochs)
device_flag = bool(parsed_results.use_gpu)
                       
# Load datasets
train_data,test_data,validationdata,trainloader,testloader,validationloader = data_load(data_directory)

# Load pre-trained model
model = getattr(models,pretrained_model)(pretrained = True)

# Modify classifier based on current dataset
model = modify_classifier(model,model.classifier[0].in_features,device_flag)

# Initialize loss and optimizer
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr)

# Train the model on the dataset
model, optimizer = train_model(3,50,model,trainloader,criterion,optimizer,validationloader,device_flag)

# Use the test dataset for accuracy
test_accuracy(model,testloader,device_flag)

# Save the model onto disk
save_model(model,checkpoint,train_data,optimizer)