示例#1
0
def LWTDWS(alpha, c, cg, c0, H):
    alpha0 = None
    H0 = None
    errorMsg = None

    deg2rad = math.pi / 180.0

    arg = (c0 / c) * cmath.sin(alpha * deg2rad)
    if ComplexUtil.greaterThanEqual(arg, 1):
        errorMsg = "Error: Violation of assumptions for Snells Law"
        return alpha0, H0, errorMsg

    alpha0 = (cmath.asin(arg)) / deg2rad

    ksf = cmath.sqrt(c0 / (2 * cg))  # shoaling coefficient

    alphaCos = cmath.cos(alpha0 * deg2rad) / cmath.cos(alpha * deg2rad)
    if ComplexUtil.lessThan(alphaCos, 0):
        errorMsg = "Error: Alpha1 data out of range"
        return alpha0, H0, errorMsg

    krf = cmath.sqrt(alphaCos)  # refraction coefficient

    H0 = H / (ksf * krf)

    return alpha0, H0, errorMsg
示例#2
0
    def performCalculations(self, caseInputList, caseIndex = 0):
        Hmo, Tp, d = self.getCalcValues(caseInputList)
        dataDict = {"Hmo": Hmo, "Tp": Tp, "d": d}

        Htype = []
        Htype.append(0.50) #Hmed;
        Htype.append(0.66) #H1/3 (1-1/3);
        Htype.append(0.90) #H1/10 (1-1/10);
        Htype.append(0.99) #H1/100 (1-1/100);

        Hb = ERRWAVBRK1(d, 0.9)
        if Hmo >= Hb:
            self.errorMsg =\
                "Error: Input wave broken (Hb = %6.2f %s)" % (Hb, self.labelUnitDist)

            print(self.errorMsg)
            self.fileOutputWriteMain(dataDict, caseIndex)
            return

        L, k = WAVELEN(d, Tp, 50, self.g)
        steep, maxstp = ERRSTP(Hmo, d, L)
        if ComplexUtil.greaterThanEqual(steep, maxstp):
            self.errorMsg =\
                "Error: Input wave unstable (Max: %0.4f, [H/L] = %0.4f)" %\
                    (maxstp.real, steep.real)

            print(self.errorMsg)
            self.fileOutputWriteMain(dataDict, caseIndex)
            return

        dterm = d/(self.g*Tp**2)
        k = 0
        sum1 = 0

        if dterm > 0.01:
            print("Input conditions indicate Rayleigh distribution")
            Hb = math.sqrt(5)*Hmo
            Hinc = Hb/10000
            sigma = Hmo/4
            Hrms = 2*math.sqrt(2)*sigma

            H = [0]
            p = [0]
            index = [0, 0, 0, 0]
            for i in range(2, 10002):
                # Rayleigh distribution
                H.append(Hinc * (i - 1))
                term1 = math.exp(-(H[i - 1]/Hrms)**2)
                term2 = (2 * H[i - 1])/Hrms**2
                p.append(term1 * term2)

                sum1 = sum1 + (p[i - 1]*Hinc)
                if k < 4 and sum1 > Htype[k]:
                    index[k] = i
                    k = k + 1

            Hout = []
            for k in range(1, 4):
                sum2 = 0
                Hstart = H[index[k]]
                Hinc = (Hb - Hstart)/10000
                pprv = p[index[k]]
                Hprv = Hstart

                for i in range(2, 10001):
                    Hnxt = Hstart + Hinc*(i - 1)
                    term1 = math.exp(-(Hnxt/Hrms)**2)
                    term2 = (2 * Hnxt)/Hrms**2
                    pnxt = term1 * term2
                    darea = 0.5*(pprv + pnxt)*Hinc # area of a trapezoid
                    sum2 = sum2 + (Hinc/2.0 + Hprv)*darea
                    pprv = pnxt
                    Hprv = Hnxt
                Hout.append(sum2 / (1 - Htype[k])) # computing centroid (areasum = 1-Htype)
        else:
            Hb = d
            Hinc = Hb / 100.0
            print("Input conditions indicate Beta-Rayleigh distribution")
            a1 = 0.00089
            b1 = 0.834
            a2 = 0.000098
            b2 = 1.208

            d1 = a1*dterm**(-b1)
            if d1 > 35.0:
                self.errorMsg = "Error: d/gT^2 approaching infinity"

                print(self.errorMsg)
                self.fileOutputWriteMain(dataDict, caseIndex)
                return

            Hrms = (1/math.sqrt(2))*math.exp(d1)*Hmo # root-mean-square wave height

            d2 = a2 * dterm**(-b2)
            if d2 > 35.0:
                self.errorMsg = "Error: d/gT^2 approaching infinity"

                print(self.errorMsg)
                self.fileOutputWriteMain(dataDict, caseIndex)
                return

            Hrmsq = (1/math.sqrt(2))*math.exp(d2)*Hmo**2 # root-mean-quad wave height

            # Computing alpha and beta
            K1 = (Hrms / Hb)**2
            K2 = (Hrmsq**2) / (Hb**4)

            alpha = (K1*(K2 - K1))/(K1**2 - K2)
            beta = ((1.0 - K1)*(K2 - K1))/(K1**2 - K2)

            term1 = (2*sp.gamma(alpha + beta))/(sp.gamma(alpha)*sp.gamma(beta))

            H = []
            p = []
            index = [0, 0, 0, 0]
            for i in range(101):
                # Beta-Rayleigh distribution
                H.append(Hinc*i)
                
                # Avoid division by zero
                try:
                    term2 = (H[i]**(2*alpha - 1))/(Hb**(2*alpha))
                except:
                    term2 = float('inf')
                
                # Avoid division by zero
                try:
                    term3 = (1.0 - (H[i]/Hb)**2)**(beta - 1.0)
                except:
                    term3 = float('inf')
                
                p.append(term1 * term2 * term3)

                sum1 = sum1 + (p[i]*Hinc)
                if k < 4 and sum1 > Htype[k]:
                    index[k] = i
                    k = k + 1

            Hout = []
            for k in range(1, 4):
                sum2 = 0
                Hstart = H[index[k]]
                Hinc = (Hb - Hstart)/20
                pprv = p[index[k]]
                Hprv = Hstart

                for i in range(1, 20):
                    Hnxt = Hstart + Hinc*i
                    term2 = (Hnxt**(2*alpha - 1))/(Hb**(2*alpha))
                    
                    # Avoid division by zero
                    try:
                        term3 = (1 - (Hnxt/Hb)**2)**(beta - 1)
                    except:
                        term3 = float('inf')
                        
                    pnxt = term1*term2*term3
                    darea = 0.5*(pprv + pnxt)*Hinc # area of a trapezoid
                    sum2 = sum2 + (Hinc/2.0 + Hprv)*darea
                    pprv = pnxt
                    Hprv = Hnxt

                Hout.append(sum2 / (1 - Htype[k])) # computing centroid (areasum = 1-Htype)

        Hmed = H[index[0]]

        print("Wave heights")
        print("Hrms\t\t%6.2f %s" % (Hrms, self.labelUnitDist))
        print("Hmed\t\t%6.2f %s" % (Hmed, self.labelUnitDist))
        print("H(1/3)\t\t%6.2f %s" % (Hout[0], self.labelUnitDist))
        print("H(1/10)\t\t%6.2f %s" % (Hout[1], self.labelUnitDist))
        print("H(1/100)\t%6.2f %s" % (Hout[2], self.labelUnitDist))

        dataDict["Hrms"] = Hrms
        dataDict["Hmed"] = Hmed
        dataDict["Hout"] = Hout
        self.fileOutputWriteMain(dataDict, caseIndex)

        if self.isSingleCase:
            self.plotDict = {"Hrms": Hrms, "Hmed": Hmed, "Hout": Hout,\
                "H": H, "p": p}