示例#1
0
B_test = graph.construct_bi_graph_buyer_product(test)
testBuyers, testProducts = nx.bipartite.sets(B_test)

timer = MeasureTimer()


def predict_random_buyers(testProducts, k):
    for product in testProducts:
        by = np.random.choice(list(buyers),
                              int(all_c * k / 100),
                              replace=False)
        yield (product, by)


results = {}
for k in map(int, np.linspace(100, 0, K)):
    dprint("Running for k: ", k)
    with timer:
        predicted = predict_random_buyers(testProducts, k)

    scores = validate_buyers_for_products(B_test, predicted, all_c)
    #results[k] = tuple(np.average(list(scores), axis=0))
    results[k] = list(scores)

if saveto:
    with open(saveto, 'wb') as f:
        pickle.dump(Result(results, timer), f)

printResults(results)

print("Average time %s" % timer.getAverage())
示例#2
0
        KNeighborsRegressor, LogisticRegression
]):
    with timer:
        all_predicted = predict_buyers_mining(testProducts,
                                              list(np.linspace(0, 1, K)), m)
    predicted = defaultdict(list)
    for p in all_predicted:
        predicted[p[0]].append(p[1:])

    for k, p in predicted.items():
        scores = validate_buyers_for_products(B_test, p, all_c)
        #results[idx][k] = tuple(np.average(list(scores), axis=0))
        results[idx][k] = list(scores)

if saveto:
    with open(saveto, 'wb') as f:
        pickle.dump(Result(results, timer), f)

print("LINEAR REGRESSION")
printResults(results[0])

print("RANDOM FOREST")
printResults(results[1])

print("KNN")
printResults(results[2])

print("LOGISTIC REGRESSION")
printResults(results[3])

print("Average time %s" % timer.getAverage())
示例#3
0
    w4 = weights.weight_promotion(product_info)
    w5 = weights.weight_rating(product_info)
    #w6 = weights.combine_weights([w1, w4, w2], [0.7, 0.5, 0.3])
    for wi, w in enumerate([w1, w2, w3]):

        def runForK(k):
            dprint("Running for k: ", k)
            with timer:
                predicted = predict_buyers_for_products(B, testProducts, weights.cutOffK(w, k), m)

            scores = validate_buyers_for_products(B_test, predicted, all_c)
            #return tuple(np.average(list(scores), axis=0))
            return list(scores)

        results[mi][wi] = {k: runForK(k) for k in range(0, K)}

if saveto:
    with open(saveto, 'wb') as f:
        pickle.dump(Result(results, timer),f)

for i, r in results[0].items():
    print("UNION W" + str(i+1))
    printResults(r)

print()

for i, r in results[1].items():
    print("INTERSECT W" + str(i+1))
    printResults(r)

print("Average time %s" % timer.getAverage())
示例#4
0
            for k in map(int, np.linspace(230, 240, K)):
                dprint("Running for k: ", k, k2)

                predictedBuyers = predict_buyers_for_products(
                    B, testProducts,
                    weights.cutOffK(weights.bipartite_products_weights(B), k))

                product_buyers = {
                    product: buyers
                    for product, buyers in predictedBuyers
                }

                predicted = list(m(buyer_products, product_buyers))

                #scores = validate_buyers_for_products(B_test, predicted, all_c)
                scores = validate_products_for_buyers(B_test, predicted, all_c)
                #results[(k, k2)] = tuple(np.average(list(scores), axis=0))
                results[mi][(k, k2)] = list(scores)

if saveto:
    with open(saveto, 'wb') as f:
        pickle.dump(Result(results, timer), f)

print('Intersect:')
printResults(results[0])

print('Union:')
printResults(results[1])

print("Average time %s" % timer.getAverage())