示例#1
0
def test_constpdf(tmpdir):
    '''
    Test a fit with a constant PDF.
    '''
    pdf = helpers.default_add_pdfs(extended=False)

    # Check for "get_values" and "set_values"
    p = pdf.norm()
    pdf.set_values(**pdf.get_values())
    assert np.allclose(p, pdf.norm())

    # Test a simple fit
    data = pdf.generate(10000)

    with fit_test(pdf) as test:
        with minkit.minimizer('uml', pdf, data, minimizer='minuit') as minuit:
            test.result = minuit.migrad()

    # Test the JSON conversion
    with open(os.path.join(tmpdir, 'pdf.json'), 'wt') as fi:
        json.dump(minkit.pdf_to_json(pdf), fi)

    with open(os.path.join(tmpdir, 'pdf.json'), 'rt') as fi:
        s = minkit.pdf_from_json(json.load(fi))

    check_multi_pdfs(s, pdf)
示例#2
0
def test_convpdfs(tmpdir):
    '''
    Test the "ConvPDFs" class.
    '''
    m = minkit.Parameter('m', bounds=(-20, +20))

    # Create two Gaussians
    c1 = minkit.Parameter('c1', 0, bounds=(-2, +2))
    s1 = minkit.Parameter('s1', 3, bounds=(0.5, +10))
    g1 = minkit.Gaussian('g1', m, c1, s1)

    c2 = minkit.Parameter('c2', 0, bounds=(-2, +2))
    s2 = minkit.Parameter('s2', 4, bounds=(0.5, +10))
    g2 = minkit.Gaussian('g2', m, c2, s2)

    pdf = minkit.ConvPDFs('convolution', g1, g2)

    data = pdf.generate(10000)

    # Check that the output is another Gaussian with bigger standard deviation
    mean = minkit.core.aop.sum(data[m.name]) / len(data)
    var = minkit.core.aop.sum((data[m.name] - mean)**2) / len(data)

    assert np.allclose(var, s1.value**2 + s2.value**2, rtol=0.1)

    # Check that the normalization is correct
    with pdf.bind() as proxy:
        assert np.allclose(proxy.integral(), 1.)
        assert np.allclose(proxy.norm(), 1.)
        assert np.allclose(proxy.numerical_normalization(), 1.)

    # Ordinary check for PDFs
    values, edges = np.histogram(minkit.as_ndarray(data[m.name]),
                                 bins=100,
                                 range=m.bounds)

    centers = minkit.DataSet.from_array(0.5 * (edges[1:] + edges[:-1]), m)

    pdf_values = minkit.plotting.scaled_pdf_values(pdf, centers, values, edges)

    assert np.allclose(np.sum(pdf_values), np.sum(values), rtol=0.01)

    # Test a fit
    with fit_test(pdf) as test:
        with minkit.minimizer('uml', pdf, data, minimizer='minuit') as minuit:
            test.result = minuit.migrad()

    # Test the JSON conversion
    with open(os.path.join(tmpdir, 'pdf.json'), 'wt') as fi:
        json.dump(minkit.pdf_to_json(pdf), fi)

    with open(os.path.join(tmpdir, 'pdf.json'), 'rt') as fi:
        s = minkit.pdf_from_json(json.load(fi))

    check_multi_pdfs(s, pdf)
示例#3
0
def test_addpdfs(tmpdir):
    '''
    Test the "AddPDFs" class.
    '''
    m = minkit.Parameter('m', bounds=(-5, +5))

    # Create an Exponential PDF
    k = minkit.Parameter('k', -0.05, bounds=(-0.1, 0))
    e = minkit.Exponential('exponential', m, k)

    # Create a Gaussian PDF
    c = minkit.Parameter('c', 0., bounds=(-2, +2))
    s = minkit.Parameter('s', 1., bounds=(-3, +3))
    g = minkit.Gaussian('gaussian', m, c, s)

    # Add them together
    g2e = minkit.Parameter('g2e', 0.5, bounds=(0, 1))
    pdf = minkit.AddPDFs.two_components('model', g, e, g2e)

    assert len(pdf.all_args) == (1 + len(g.args) + len(e.args))

    gdata = helpers.rndm_gen.normal(c.value, s.value, 100000)
    edata = helpers.rndm_gen.exponential(-1. / k.value, 100000)
    data = np.concatenate([gdata, edata])

    values, edges = np.histogram(data, bins=100, range=m.bounds)

    centers = minkit.DataSet.from_ndarray(0.5 * (edges[1:] + edges[:-1]), m)

    pdf_values = minkit.utils.core.scaled_pdf_values(pdf, centers, values,
                                                     edges)

    assert np.allclose(np.sum(pdf_values), np.sum(values))

    # Test consteness of the PDFs
    k.constant = True
    assert e.constant and not pdf.constant
    g2e.constant = True
    assert not pdf.constant
    for p in pdf.all_args:
        p.constant = True
    assert pdf.constant

    # Test the JSON conversion
    with open(os.path.join(tmpdir, 'pdf.json'), 'wt') as fi:
        json.dump(minkit.pdf_to_json(pdf), fi)

    with open(os.path.join(tmpdir, 'pdf.json'), 'rt') as fi:
        s = minkit.pdf_from_json(json.load(fi))

    check_multi_pdfs(s, pdf)

    # Check copying the PDF
    pdf.copy()
示例#4
0
def test_prodpdfs(tmpdir):
    '''
    Test the "ProdPDFs" class.
    '''
    # Create two Gaussians
    mx = minkit.Parameter('mx', bounds=(-5, +5))
    cx = minkit.Parameter('cx', 0., bounds=(-2, +2))
    sx = minkit.Parameter('sx', 1., bounds=(0.1, +3))
    gx = minkit.Gaussian('gx', mx, cx, sx)

    my = minkit.Parameter('my', bounds=(-5, +5))
    cy = minkit.Parameter('cy', 0., bounds=(-2, +2))
    sy = minkit.Parameter('sy', 2., bounds=(0.5, +3))
    gy = minkit.Gaussian('gy', my, cy, sy)

    pdf = minkit.ProdPDFs('pdf', [gx, gy])

    # Test integration
    helpers.check_numerical_normalization(pdf)

    # Test consteness of the PDFs
    for p in gx.all_args:
        p.constant = True
    assert gx.constant and not pdf.constant
    for p in gy.all_args:
        p.constant = True
    assert pdf.constant

    # Test the JSON conversion
    with open(os.path.join(tmpdir, 'pdf.json'), 'wt') as fi:
        json.dump(minkit.pdf_to_json(pdf), fi)

    with open(os.path.join(tmpdir, 'pdf.json'), 'rt') as fi:
        s = minkit.pdf_from_json(json.load(fi))

    check_multi_pdfs(s, pdf)

    # Check copying the PDF
    pdf.copy()

    # Do a simple fit
    for p in pdf.all_real_args:
        p.constant = False

    data = pdf.generate(10000)

    with fit_test(pdf) as test:
        with minkit.minimizer('uml', pdf, data) as minimizer:
            test.result = minimizer.migrad()
示例#5
0
def test_constpdf(tmpdir):
    '''
    Test a fit with a constant PDF.
    '''
    m = minkit.Parameter('m', bounds=(0, 10))

    # Create an Exponential PDF
    k = minkit.Parameter('k', -0.05)
    e = minkit.Exponential('exponential', m, k)

    # Create a Gaussian PDF
    c = minkit.Parameter('c', 5., bounds=(0, 10))
    s = minkit.Parameter('s', 1., bounds=(0.5, 3))
    g = minkit.Gaussian('gaussian', m, c, s)

    # Add them together
    g2e = minkit.Parameter('g2e', 0.5, bounds=(0, 1))
    pdf = minkit.AddPDFs.two_components('model', g, e, g2e)

    # Check for "get_values" and "set_values"
    p = pdf.norm()
    pdf.set_values(**pdf.get_values())
    assert np.allclose(p, pdf.norm())

    # Test a simple fit
    data = pdf.generate(10000)

    with fit_test(pdf) as test:
        with minkit.minimizer('uml', pdf, data, minimizer='minuit') as minuit:
            test.result = minuit.migrad()

    # Test the JSON conversion
    with open(os.path.join(tmpdir, 'pdf.json'), 'wt') as fi:
        json.dump(minkit.pdf_to_json(pdf), fi)

    with open(os.path.join(tmpdir, 'pdf.json'), 'rt') as fi:
        s = minkit.pdf_from_json(json.load(fi))

    check_multi_pdfs(s, pdf)
示例#6
0
def test_prodpdfs(tmpdir):
    '''
    Test the "ProdPDFs" class.
    '''
    # Create two Gaussians
    mx = minkit.Parameter('mx', bounds=(-5, +5))
    cx = minkit.Parameter('cx', 0., bounds=(-2, +2))
    sx = minkit.Parameter('sx', 1., bounds=(-3, +3))
    gx = minkit.Gaussian('gx', mx, cx, sx)

    my = minkit.Parameter('my', bounds=(-5, +5))
    cy = minkit.Parameter('cy', 0., bounds=(-2, +2))
    sy = minkit.Parameter('sy', 1., bounds=(-3, +3))
    gy = minkit.Gaussian('gy', my, cy, sy)

    pdf = minkit.ProdPDFs('pdf', [gx, gy])

    # Test integration
    assert np.allclose(pdf.norm(), pdf.numerical_normalization())

    # Test consteness of the PDFs
    for p in gx.all_args:
        p.constant = True
    assert gx.constant and not pdf.constant
    for p in gy.all_args:
        p.constant = True
    assert pdf.constant

    # Test the JSON conversion
    with open(os.path.join(tmpdir, 'pdf.json'), 'wt') as fi:
        json.dump(minkit.pdf_to_json(pdf), fi)

    with open(os.path.join(tmpdir, 'pdf.json'), 'rt') as fi:
        s = minkit.pdf_from_json(json.load(fi))

    check_multi_pdfs(s, pdf)
示例#7
0
def test_convpdfs(tmpdir):
    '''
    Test the "ConvPDFs" class.
    '''
    m = minkit.Parameter('m', bounds=(-20, +20))

    # Create two Gaussians
    c1 = minkit.Parameter('c1', 0, bounds=(-2, +2))
    s1 = minkit.Parameter('s1', 3, bounds=(0.5, +10))
    g1 = minkit.Gaussian('g1', m, c1, s1)

    c2 = minkit.Parameter('c2', 0, bounds=(-2, +2))
    s2 = minkit.Parameter('s2', 4, bounds=(0.5, +10))
    g2 = minkit.Gaussian('g2', m, c2, s2)

    pdf = minkit.ConvPDFs('convolution', g1, g2)

    data = pdf.generate(10000)

    # Check that the output is another Gaussian with bigger standard deviation
    mean = aop.sum(data[m.name]) / len(data)
    var = aop.sum((data[m.name] - mean)**2) / len(data)

    assert np.allclose(var, s1.value**2 + s2.value**2, rtol=0.1)

    # Ordinary check for PDFs
    values, edges = np.histogram(data[m.name].as_ndarray(),
                                 bins=100,
                                 range=m.bounds)

    centers = minkit.DataSet.from_ndarray(0.5 * (edges[1:] + edges[:-1]), m)

    pdf_values = minkit.utils.core.scaled_pdf_values(pdf, centers, values,
                                                     edges)

    assert np.allclose(np.sum(pdf_values), np.sum(values), rtol=0.01)

    # Test a fit
    s2.constant = True  # otherwise the minimization is undefined

    with fit_test(pdf) as test:
        with minkit.minimizer('uml', pdf, data, minimizer='minuit') as minuit:
            test.result = minuit.migrad()

    # Test the JSON conversion
    with open(os.path.join(tmpdir, 'pdf.json'), 'wt') as fi:
        json.dump(minkit.pdf_to_json(pdf), fi)

    with open(os.path.join(tmpdir, 'pdf.json'), 'rt') as fi:
        s = minkit.pdf_from_json(json.load(fi))

    check_multi_pdfs(s, pdf)

    # Check copying the PDF
    pdf.copy()

    # Test for binned data samples
    bdata = data.make_binned(20)

    with fit_test(pdf) as test:
        with minkit.minimizer('bml', pdf, bdata, minimizer='minuit') as minuit:
            test.result = minuit.migrad()