def plugins_command(status, context): response = plugins(status, context) if context == 'global': if response['plugins']['global']: click.echo('Global context!') click.echo('Exporting to firebase...') data = helpers.db.child('data').child(settings.HOSTNAME).shallow().get() if data: click.echo(f'Updating {settings.HOSTNAME} information...') if helpers.update_dataset(response): click.echo('Export complete!') else: click.echo('Something goes wrong when exporting!') else: click.echo(f'Generating {settings.HOSTNAME} information...') if helpers.create_dataset(response): click.echo('Export complete!') else: click.echo('Something goes wrong when exporting!') else: click.echo('Nothing to export') else: click.echo(json.dumps(response))
from keras import backend as K from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, Flatten from keras.models import Sequential from sklearn.model_selection import train_test_split batch_size = 64 num_classes = 26 epochs = 40 img_rows, img_cols = 40, 30 detection2 = './detection-images/sss.png' detection_label = 'S' print('Start loading data.') files, labels = helpers.load_chars74k_data() X, y = helpers.create_dataset(files, labels) print('Data has been loaded.') x_train, x_test, y_train, y_test = train_test_split(X, y, random_state=2, train_size=0.9) if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1)
# [ # [] # ], # [ # [ # [] # ] # ] # ] # ], # [], # [ # [ # [], # [] # ] # ] # ] from helpers import create_dataset dataset, edges = create_dataset(2) def count_edges(data): # @TODO implement! pass assert edges == count_edges(dataset)
counter = 0 solution = ['test'] temp = 'start' count = find_houses(grid) dfs_move(grid, position, visited_houses, counter, solution, count, temp) check_solutions(count) solution = solutions find = 30000 for i in range(len(solution)): if len(solution[i]) < find: find = len(solution[i]) index = i solution = solution[index] create_dataset(grid, solution, position) # solution = decision_tree_move(grid, position, clf) print(solution) while solution: display_text(myfont, DISPLAYSURF, f"Ilość śmieci w śmieciarce: {garbage_amount}/{garbage_collector.container_capacity}", 600, 0) for house in houses: display_text(myfont, DISPLAYSURF, f"{house.garbage_amount}", house.rect.x, house.rect.y + 10) pygame.display.update() move = solution.pop(0) garbage_taken = 0
def anomaly_uni_LSTM(lista_datos, desv_mse=0): temp = pd.DataFrame(lista_datos, columns=['values']) data_raw = temp.values.astype("float32") scaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(data_raw) print(data_raw) TRAIN_SIZE = 0.70 train_size = int(len(dataset) * TRAIN_SIZE) test_size = len(dataset) - train_size train, test = dataset[0:train_size, :], dataset[train_size - 2:len(dataset), :] # Create test and training sets for one-step-ahead regression. window_size = 1 train_X, train_Y = h.create_dataset(train, window_size) test_X, test_Y = h.create_dataset(test, window_size) forecast_X, forecast_Y = h.create_dataset(dataset, window_size) train_X = np.reshape(train_X, (train_X.shape[0], 1, train_X.shape[1])) test_X = np.reshape(test_X, (test_X.shape[0], 1, test_X.shape[1])) forecast_X = np.reshape(forecast_X, (forecast_X.shape[0], 1, forecast_X.shape[1])) #############new engine LSTM model = Sequential() model.add(LSTM(100, input_shape=(train_X.shape[1], train_X.shape[2]))) model.add(Dense(1)) model.compile(loss='mse', optimizer='adam') history = model.fit(train_X, train_Y, epochs=300, batch_size=100, validation_data=(test_X, test_Y), verbose=0, shuffle=False) yhat = model.predict(test_X) print("estoy") yhat_inverse = scaler.inverse_transform(yhat.reshape(-1, 1)) testY_inverse = scaler.inverse_transform(test_Y.reshape(-1, 1)) print(len(test_X)) print(len(test_Y)) lista_puntos = np.arange(train_size, train_size + test_size, 1) print(lista_puntos) testing_data = pd.DataFrame(yhat_inverse, index=lista_puntos, columns=['expected value']) rmse = math.sqrt(mean_squared_error(testY_inverse, yhat_inverse)) mse = mean_squared_error(testY_inverse, yhat_inverse) mae = mean_absolute_error(testY_inverse, yhat_inverse) print("pasa") df_aler = pd.DataFrame() test = scaler.inverse_transform([test_Y]) df_aler['real_value'] = test[0] df_aler['expected value'] = yhat_inverse df_aler['step'] = np.arange(0, len(yhat_inverse), 1) df_aler['mae'] = mae df_aler['mse'] = mse df_aler['anomaly_score'] = abs(df_aler['expected value'] - df_aler['real_value']) / df_aler['mae'] df_aler_ult = df_aler[:5] df_aler_ult = df_aler_ult[ (df_aler_ult.index == df_aler.index.max()) | (df_aler_ult.index == ((df_aler.index.max()) - 1)) | (df_aler_ult.index == ((df_aler.index.max()) - 2)) | (df_aler_ult.index == ((df_aler.index.max()) - 3)) | (df_aler_ult.index == ((df_aler.index.max()) - 4))] if len(df_aler_ult) == 0: exists_anom_last_5 = 'FALSE' else: exists_anom_last_5 = 'TRUE' df_aler = df_aler[(df_aler['anomaly_score'] > 2)] max = df_aler['anomaly_score'].max() min = df_aler['anomaly_score'].min() df_aler['anomaly_score'] = (df_aler['anomaly_score'] - min) / (max - min) max = df_aler_ult['anomaly_score'].max() min = df_aler_ult['anomaly_score'].min() df_aler_ult['anomaly_score'] = (df_aler_ult['anomaly_score'] - min) / (max - min) pred_scaled = model.predict(forecast_X) pred = scaler.inverse_transform(pred_scaled) print("el tamano de la preddicion") print(len(pred)) print(pred) print('prediccion') engine_output = {} engine_output['rmse'] = str(math.sqrt(mse)) engine_output['mse'] = int(mse) engine_output['mae'] = int(mae) engine_output['present_status'] = exists_anom_last_5 engine_output['present_alerts'] = df_aler_ult.fillna(0).to_dict( orient='record') engine_output['past'] = df_aler.fillna(0).to_dict(orient='record') engine_output['engine'] = 'LSTM' df_future = pd.DataFrame(pred[len(pred) - 5:], columns=['value']) df_future['value'] = df_future.value.astype("float64") df_future['step'] = np.arange(len(lista_datos), len(lista_datos) + 5, 1) engine_output['future'] = df_future.to_dict(orient='record') print("llegamos hasta aqui") #testing_data['excepted value'].astype("float64") testing_data['step'] = testing_data.index #testing_data.step.astype("float64") print("llegamos hasta aqui2") engine_output['debug'] = testing_data.to_dict(orient='record') return (engine_output)
from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import helpers estimators = 2000 features = 50 # CPU cores for running the RandomForestClassifier. cpu_cores = 4 print('Start loading data.') files, labels = helpers.load_chars74k_data() X, y = helpers.create_dataset(files, labels, with_denoising=True) print('Data has been loaded.') x_train, x_test, y_train, y_test = train_test_split(X, y, random_state=2, train_size=0.8) # Normalizing images. x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('Start training the model.') model = RandomForestClassifier(n_estimators=estimators, max_features=features, verbose=True,