示例#1
0
        data = {
            'value': value,
            'prediction_training': training_colomn,
            'label': label
        }
        colomn_arrangement = ['value', 'prediction_training', 'label']
        for i in range(no_of_prediction_points):
            prediction[i] = np.append(training, prediction[i])
            data['prediction_' + str(i)] = prediction[i]
            colomn_arrangement.append('prediction_' + str(i))

        dataframe_out = pandas.DataFrame(data, index=timestamp)
        dataframe_out.index.name = "timestamp"
        dataframe_out = dataframe_out[colomn_arrangement]
        out_file = helpers.get_result_file_name(f, csv_output_directory, m)
        dataframe_out.to_csv(out_file)

        testing_value = value[testing_start:]
        mse = helpers.MSE_multipoint(testing_value, testing_prediction,
                                     no_of_prediction_points)
        output_files.append(
            helpers.get_result_dump_name(out_file) + "," + str(mse) + "," +
            params)

        helpers.dump_results(output_files, csv_output_directory, m)
        print("##### [" + m + "]" + str(count) +
              " CSV input File processed #####")
        count += 1

    print("##### " + m + " done ! #####")
print("All Done !")
示例#2
0
            testing_start = int(training_ratio*len(value))
            training = np.ones(testing_start)
            testing = np.zeros(len(value)-testing_start)
            training_colomn = np.append(training,testing)
            
            try :
                label = np.array(dataframe_expect['label'])
            except KeyError:
                print "Warnning :["+f+"] No `label` colomn found data set without labels !. Assumes there are no anomolies"
                label = np.zeros(len(value))

            testing_prediction = prediction
            prediction = np.append(training, prediction)

            data = {'prediction':prediction, 'value':value, 'prediction_training':training_colomn, 'label':label } 
            dataframe_out = pandas.DataFrame(data, index=timestamp)
            dataframe_out.index.name = "timestamp"
            dataframe_out = dataframe_out[['value','prediction_training','prediction','label']]
            out_file = helpers.get_result_file_name(f, csv_output_directory,m)
            dataframe_out.to_csv(out_file)

            testing_value = value[testing_start:]
            mse = helpers.MSE(testing_value, testing_prediction)
            output_files.append( helpers.get_result_dump_name(out_file) +","+ str(mse)+","+params )

            helpers.dump_results(output_files, csv_output_directory,m)
        print("##### ["+m+"]"+ str(count) + " CSV input File processed #####")
        count += 1

    print("##### " + m + " done ! #####")
print("All Done !")