示例#1
0
output_files = []
output_files.append("file,mse,parameters")
helpers.dump_results(output_files, results_folder,model)
for f in csv_input_files:
    try :
        # fetching input file data
        dataframe_expect = pandas.read_csv(f)
        value = np.array(dataframe_expect['value'])
        timestamp = np.array(dataframe_expect['timestamp'])
        try :
            label = np.array(dataframe_expect['label'])
        except KeyError:
            print "Warnning :["+f+"] No `label` colomn found data set without labels !. Assumes there are no anomolies"
            label = np.zeros(len(value))

        dataframe_predction = pandas.read_csv(helpers.get_result_file_name(f,results_folder,model))
        prediction = np.array(dataframe_predction['prediction'])
        params = "training_size="+str(tesing_start)

        file_not_found = False
    except IOError:
        file_not_found = True
        print("Warnning :["+helpers.get_result_file_name(f,results_folder,model)+"] File not found !")
    if file_not_found:
        out_file = helpers.get_result_file_name(f, results_folder,model)
        output_files.append( helpers.get_result_dump_name(out_file) +",n/a,n/a" )
        helpers.dump_results(output_files, results_folder,model)
    else :
        
        training = np.ones(tesing_start)
        testing = np.zeros(len(value)-tesing_start)
示例#2
0
        data = {
            'value': value,
            'prediction_training': training_colomn,
            'label': label
        }
        colomn_arrangement = ['value', 'prediction_training', 'label']
        for i in range(no_of_prediction_points):
            prediction[i] = np.append(training, prediction[i])
            data['prediction_' + str(i)] = prediction[i]
            colomn_arrangement.append('prediction_' + str(i))

        dataframe_out = pandas.DataFrame(data, index=timestamp)
        dataframe_out.index.name = "timestamp"
        dataframe_out = dataframe_out[colomn_arrangement]
        out_file = helpers.get_result_file_name(f, csv_output_directory, m)
        dataframe_out.to_csv(out_file)

        testing_value = value[testing_start:]
        mse = helpers.MSE_multipoint(testing_value, testing_prediction,
                                     no_of_prediction_points)
        output_files.append(
            helpers.get_result_dump_name(out_file) + "," + str(mse) + "," +
            params)

        helpers.dump_results(output_files, csv_output_directory, m)
        print("##### [" + m + "]" + str(count) +
              " CSV input File processed #####")
        count += 1

    print("##### " + m + " done ! #####")
示例#3
0
output_files.append("file,mse,parameters")
helpers.dump_results(output_files, results_folder, model)
for f in csv_input_files:
    try:
        # fetching input file data
        dataframe_expect = pandas.read_csv(f)
        value = np.array(dataframe_expect['value'])
        timestamp = np.array(dataframe_expect['timestamp'])
        try:
            label = np.array(dataframe_expect['label'])
        except KeyError:
            print "Warnning :[" + f + "] No `label` colomn found data set without labels !. Assumes there are no anomolies"
            label = np.zeros(len(value))

        dataframe_predction = pandas.read_csv(
            helpers.get_result_file_name(f, results_folder, model))
        prediction = np.array(dataframe_predction['prediction'])
        params = "training_size=" + str(tesing_start)

        file_not_found = False
    except IOError:
        file_not_found = True
        print("Warnning :[" +
              helpers.get_result_file_name(f, results_folder, model) +
              "] File not found !")
    if file_not_found:
        out_file = helpers.get_result_file_name(f, results_folder, model)
        output_files.append(
            helpers.get_result_dump_name(out_file) + ",n/a,n/a")
        helpers.dump_results(output_files, results_folder, model)
    else: