示例#1
0
        batch_realdata = batch_realdata.view(opt.Seq_Len, opt.BATCH_SIZE, 1)
        batch_realdata = Variable(batch_realdata)
        # 判别器判别生成数据,真实数据
        prob_fake = D(batch_gdata)
        prob_real = D(batch_realdata)

        d_loss = -torch.mean(torch.log(prob_real) + torch.log(1 - prob_fake))
        g_loss = -torch.mean(torch.log(prob_fake))

        opt_D.zero_grad()
        d_loss.backward(retain_graph=True)
        opt_D.step()

        opt_G.zero_grad()
        g_loss.backward(retain_graph=True)
        opt_G.step()

        print 'Epoch:{} / BATCH: {} ,d_loss:{},g_loss:{}'.format(
            epoch, batch, d_loss.data.cpu().numpy(), g_loss.data.cpu().numpy())

        dloss_list.append(d_loss.data.cpu().numpy())
        gloss_list.append(g_loss.data.cpu().numpy())

    dloss_avg = listsumavg(dloss_list)
    gloss_avg = listsumavg(gloss_list)
    outputWriter.writerow([epoch, dloss_avg, gloss_avg])
outputFile.close()

torch.save(G.state_dict(), 'modelsaved/generatormlp.pkl')

示例#2
0
NUM = int(listlength / opt.Seq_Len / opt.BATCH_SIZE)
Filename = 'resultdata/rnn_auto.csv'
outputFile = open(Filename, 'w')
outputWriter = csv.writer(outputFile)
outputWriter.writerow(['Epoch', 'Loss'])
for epoch in range(500):
    loss_list = []
    for batch in range(NUM):
        inputs = torch.randn(opt.BATCH_SIZE, opt.Seq_Len, 1)
        for i in range(opt.BATCH_SIZE):
            for j in range(opt.Seq_Len):
                inputs[i][j][0] = pointlistx[batch * opt.Seq_Len *
                                             opt.BATCH_SIZE + i * opt.Seq_Len +
                                             j]
        inputs = Variable(inputs.view(opt.Seq_Len, opt.BATCH_SIZE, 1).cuda())
        output = net(inputs)
        criterion.cuda()
        loss = criterion(output, inputs)
        print 'epoch:{}, batch:{}, loss:{}'.format(epoch, batch, loss)
        loss_list.append(loss.data[0].item())
        # 反向传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    lossavg = listsumavg(loss_list)
    outputWriter.writerow([epoch, lossavg])

outputFile.close()

torch.save(net.state_dict(), 'modelsaved/rnn_auto.pkl')