示例#1
0
def binder(positions, orientations, bl, m=4, method='ball', margin=0):
    """Calculate the binder cumulant, given positions and orientations.

    bl: the binder length scale, such that
        B(bl) = 1 - .333 * S4 / S2^2
    where SN are <phibl^N> averaged over each block/cluster of size bl in frame.
    """
    if margin:
        if margin < ss:
            margin *= ss
        center = 0.5*(positions.max(0) + positions.min(0))
        dmask = d < d.max() - margin
        positions = positions[dmask]
        orientations = orientations[dmask]
    if 'neigh' in method or 'ball' in method:
        tree = KDTree(positions)
        balls = tree.query_ball_tree(tree, bl)
        balls, ball_mask = helpy.pad_uneven(balls, 0, True, int)
        ball_orient = orientations[balls]
        ball_orient[ball_mask] = np.nan
        phis = np.nanmean(np.exp(m*ball_orient*1j), 1)
        phi2 = np.dot(phis, phis) / len(phis)
        phiphi = phis*phis
        phi4 = np.dot(phiphi, phiphi) / len(phiphi)
        return 1 - phi4 / (3*phi2*phi2)
    else:  # elif method=='block':
        raise ValueError("method {} not implemented".format(method))
def binder(positions, orientations, bl, m=4, method='ball', margin=0):
    """ Calculate the binder cumulant for a frame, given positions and orientations.

        bl: the binder length scale, such that
            B(bl) = 1 - .333 * S4 / S2^2
        where SN are <phibl^N> averaged over each block/cluster of size bl in frame.
    """
    if margin:
        if margin < ss:
            margin *= ss
        center = 0.5*(positions.max(0) + positions.min(0))
        dmask = d < d.max() - margin
        positions = positions[dmask]
        orientations = orientations[dmask]
    if 'neigh' in method or 'ball' in method:
        tree = cKDTree(positions)
        balls = tree.query_ball_tree(tree, bl)
        balls, ball_mask = helpy.pad_uneven(balls, 0, True, int)
        ball_orient = orientations[balls]
        ball_orient[~ball_mask] = np.nan
        phis = np.nanmean(np.exp(m*ball_orient*1j), 1)
        phi2 = np.dot(phis, phis) / len(phis)
        phiphi = phis*phis
        phi4 = np.dot(phiphi, phiphi) / len(phiphi)
        return 1 - phi4 / (3*phi2*phi2)
    else:
        raise ValueError, "method {} not implemented".format(method)
    #elif method=='block':
        left, right, bottom, top = (positions[:,0].min(), positions[:,0].max(),
                                    positions[:,1].min(), positions[:,1].max())
        xbins, ybins = np.arange(left, right + bl, bl), np.arange(bottom, top + bl, bl)
        blocks = np.rollaxis(np.indices((xbins.size, ybins.size)), 0, 3)
        block_ind = np.column_stack([
                     np.digitize(positions[:,0], xbins),
                     np.digitize(positions[:,1], ybins)])
示例#3
0
def binder(positions, orientations, bl, m=4, method='ball', margin=0):
    """Calculate the binder cumulant, given positions and orientations.

    bl: the binder length scale, such that
        B(bl) = 1 - .333 * S4 / S2^2
    where SN are <phibl^N> averaged over each block/cluster of size bl in frame.
    """
    if margin:
        if margin < ss:
            margin *= ss
        center = 0.5 * (positions.max(0) + positions.min(0))
        dmask = d < d.max() - margin
        positions = positions[dmask]
        orientations = orientations[dmask]
    if 'neigh' in method or 'ball' in method:
        tree = KDTree(positions)
        balls = tree.query_ball_tree(tree, bl)
        balls, ball_mask = helpy.pad_uneven(balls, 0, True, int)
        ball_orient = orientations[balls]
        ball_orient[ball_mask] = np.nan
        phis = np.nanmean(np.exp(m * ball_orient * 1j), 1)
        phi2 = np.dot(phis, phis) / len(phis)
        phiphi = phis * phis
        phi4 = np.dot(phiphi, phiphi) / len(phiphi)
        return 1 - phi4 / (3 * phi2 * phi2)
    else:  # elif method=='block':
        raise ValueError("method {} not implemented".format(method))
def pair_angles(positions, neighborhood=None, ang_type='absolute', margin=0, dub=2*ss):
    """ do something with the angles a given particle makes with its neighbors

        `ang_type` can be 'relative', 'delta', or 'absolute'
        `neighborhood` may be:
            an integer (probably 4, 6, or 8), giving that many nearest neighbors,
            or None (which gives voronoi)
        `margin` is the width of excluded boundary margin
        `dub` is the distance upper bound (won't use pairs farther apart)
    """
    if neighborhood is None or str(neighborhood).lower() in ['voronoi', 'delauney']:
        #method = 'voronoi'
        tess = Delaunay(positions)
        neighbors = get_neighbors(tess, xrange(tess.npoints))
        neighbors, nmask = helpy.pad_uneven(neighbors, 0, True, int)
    elif isinstance(neighborhood, int):
        #method = 'nearest'
        tree = cKDTree(positions)
        # tree.query(P, N) returns query particle and N-1 neighbors
        distances, neighbors = tree.query(positions, 1 + neighborhood,
                                          distance_upper_bound=dub)
        assert np.allclose(distances[:,0], 0), "distance to self not zero"
        distances = distances[:,1:]
        assert np.allclose(neighbors[:,0], np.arange(tree.n)), "first neighbor not self"
        neighbors = neighbors[:,1:]
        nmask = np.isfinite(distances)
        neighbors[~nmask] = np.where(~nmask)[0]
    dx, dy = (positions[neighbors] - positions[:, None, :]).T
    angles = np.arctan2(dy, dx).T % tau
    assert angles.shape == neighbors.shape
    if ang_type == 'relative':
        # subtract off angle to nearest neighbor
        angles -= angles[:, 0, None] # None to keep dims
    elif ang_type == 'delta':
        # sort by angle then take diff
        angles[~nmask] = np.inf
        angles.sort(-1)
        angles -= np.roll(angles, 1, -1)
        nmask = np.all(nmask, 1)
    elif ang_type != 'absolute':
        raise ValueError, "unknown ang_type {}".format(ang_type)
    angles[~nmask] = np.nan
    if margin:
        if margin < ss: margin *= ss
        center = 0.5*(positions.max(0) + positions.min(0))
        d = helpy.dist(positions, center) # distances to center
        dmask = d < d.max() - margin
        assert np.allclose(len(dmask), map(len, [angles, nmask]))
        angles = angles[dmask]
        nmask = nmask[dmask]
    return (angles % tau, nmask) + ((dmask,) if margin else ())
示例#5
0
            sys.stdout.flush()
            cos = np.cos(o)
            sin = np.sin(o)
            coscorr = corr.autocorr(cos, cumulant=False, norm=False)
            sincorr = corr.autocorr(sin, cumulant=False, norm=False)
            coscorrs.append(coscorr)
            sincorrs.append(sincorr)
    else:
        coscorrs = [ corr.autocorr(np.cos(trackset['o']), cumulant=False, norm=False)
                    for trackset in tracksets.values() ]
        sincorrs = [ corr.autocorr(np.sin(trackset['o']), cumulant=False, norm=False)
                    for trackset in tracksets.values() ]

    # Gather all the track correlations and average them
    allcorr = coscorrs + sincorrs
    allcorr = helpy.pad_uneven(allcorr, np.nan)
    tcorr = np.arange(allcorr.shape[1])/fps
    meancorr = np.nanmean(allcorr, 0)
    added = np.sum(np.isfinite(allcorr), 0)
    errcorr = np.nanstd(allcorr, 0)/np.sqrt(added - 1)
    sigma = errcorr + 1e-5*np.nanstd(errcorr) # add something small to prevent 0
    if args.verbose:
        print "Merged nn corrs"

    # Fit to exponential decay
    tmax = int(50*args.zoom)
    fmax = np.searchsorted(tcorr, tmax)
    fitform = lambda s, DR: 0.5*np.exp(-DR*s)
    fitstr = r"$\frac{1}{2}e^{-D_R t}$"
    p0 = [1]
    try:
示例#6
0
def neighborhoods(positions, voronoi=False, size=None, reach=None,
                  tess=None, tree=None):
    """Build a list of lists or padded array of neighborhoods around each point

    select neighbors by any combination of three basic choices:
        Voronoi/Delaunay, distance/ball, count/nearest/number

    parameters
    positions : array with shape (N, 2) or fields 'x' and 'y'
    voronoi : whether to require pairs to be voronoi or delaunay neighbors
    size : maximum size for each neighborhood excluding center/self
    reach : maximum distance to search (exclusive).  scalar for distance/ball
        for other criteria, it may be an array of distances or a str such as
        '[min|max|mean]*{factor}' where the function is of neighbor distances
    tess, tree : optionally provide spatial.Delaunay or spatial.KDTree instance

    returns
    neighbors : list of lists (or padded array) with shape (npoints, size)
        neighbors[i] gives indices in positions to neighbors of positions[i]
        i.e., the coordinates for all neighbors of positions[i] are given by
        positions[neighbors[i]], with shape (size, 2)
    mask : True if not a real neighbor
    distances : distance to the neighbor, only calculated if needed.
    """
    try:
        fewest, most = size
    except TypeError:
        fewest, most = None, size
    need_dist = True
    filter_reach = reach is not None
    try:
        dub = float(reach)
        filter_reach = False
    except (TypeError, ValueError):
        dub = np.inf
    if voronoi:
        tess = tess or Delaunay(positions)
        neighbors = get_neighbors(tess, 'all')
    elif most is not None:
        tree = tree or KDTree(positions)
        distances, neighbors = tree.query(
            positions, np.max(most)+1, distance_upper_bound=dub)
        distances, neighbors = distances[:, 1:], neighbors[:, 1:]  # remove self
        mask = np.isinf(distances)
        neighbors[mask] = np.where(mask)[0]
        need_dist = False
    elif reach is None:
        raise ValueError("No limits on neighborhood selection applied")
    else:
        tree = tree or KDTree(positions)
        neighbors = tree.query_ball_tree(tree, dub)
        for i in xrange(len(neighbors)):
            neighbors[i].remove(i)  # remove self
    if need_dist:
        ix = np.arange(len(positions))[:, None]
        neighbors, mask = helpy.pad_uneven(neighbors, ix, True, int)
        distances = distance.cdist(positions, positions)[ix, neighbors]
        distances[mask] = np.inf
        sort = distances.argsort(1)
        distances, neighbors = distances[ix, sort], neighbors[ix, sort]
    if isinstance(reach, basestring):
        fun, fact = reach.split('*') if '*' in reach else (reach, 1)
        ix = np.arange(len(positions))
        fun = {'mean': np.nanmean, 'min': np.nanmin, 'max': np.nanmax,
               'median': np.nanmedian}[fun]
        fact = float(fact)
        reach = fun(np.where(mask, np.nan, distances), 1, keepdims=True)*fact
    if filter_reach:
        mask[distances >= reach] = True
        distances[mask] = np.inf
    if fewest is not None:
        mask[(~mask).sum(1) < fewest] = True
    if np.iterable(most):
        extra = np.clip(mask.shape[1] - most, 0, None)
        i = np.where(extra)
        extra = extra[i]
        i = np.repeat(i[0], extra)
        j = mask.shape[1] - np.concatenate(map(range, extra)) - 1
        mask[i, j] = True
        most = most.max()
    return neighbors[:, :most], mask[:, :most], distances[:, :most]
示例#7
0
def neighborhoods(positions,
                  voronoi=False,
                  size=None,
                  reach=None,
                  tess=None,
                  tree=None):
    """Build a list of lists or padded array of neighborhoods around each point

    select neighbors by any combination of three basic choices:
        Voronoi/Delaunay, distance/ball, count/nearest/number

    parameters
    positions : array with shape (N, 2) or fields 'x' and 'y'
    voronoi : whether to require pairs to be voronoi or delaunay neighbors
    size : maximum size for each neighborhood excluding center/self
    reach : maximum distance to search (exclusive).  scalar for distance/ball
        for other criteria, it may be an array of distances or a str such as
        '[min|max|mean]*{factor}' where the function is of neighbor distances
    tess, tree : optionally provide spatial.Delaunay or spatial.KDTree instance

    returns
    neighbors : list of lists (or padded array) with shape (npoints, size)
        neighbors[i] gives indices in positions to neighbors of positions[i]
        i.e., the coordinates for all neighbors of positions[i] are given by
        positions[neighbors[i]], with shape (size, 2)
    mask : True if not a real neighbor
    distances : distance to the neighbor, only calculated if needed.
    """
    try:
        fewest, most = size
    except TypeError:
        fewest, most = None, size
    need_dist = True
    filter_reach = reach is not None
    try:
        dub = float(reach)
        filter_reach = False
    except (TypeError, ValueError):
        dub = np.inf
    if voronoi:
        tess = tess or Delaunay(positions)
        neighbors = get_neighbors(tess, 'all')
    elif most is not None:
        tree = tree or KDTree(positions)
        distances, neighbors = tree.query(positions,
                                          np.max(most) + 1,
                                          distance_upper_bound=dub)
        distances, neighbors = distances[:, 1:], neighbors[:,
                                                           1:]  # remove self
        mask = np.isinf(distances)
        neighbors[mask] = np.where(mask)[0]
        need_dist = False
    elif reach is None:
        raise ValueError("No limits on neighborhood selection applied")
    else:
        tree = tree or KDTree(positions)
        neighbors = tree.query_ball_tree(tree, dub)
        for i in xrange(len(neighbors)):
            neighbors[i].remove(i)  # remove self
    if need_dist:
        ix = np.arange(len(positions))[:, None]
        neighbors, mask = helpy.pad_uneven(neighbors, ix, True, int)
        distances = distance.cdist(positions, positions)[ix, neighbors]
        distances[mask] = np.inf
        sort = distances.argsort(1)
        distances, neighbors = distances[ix, sort], neighbors[ix, sort]
    if isinstance(reach, basestring):
        fun, fact = reach.split('*') if '*' in reach else (reach, 1)
        ix = np.arange(len(positions))
        fun = {
            'mean': np.nanmean,
            'min': np.nanmin,
            'max': np.nanmax,
            'median': np.nanmedian
        }[fun]
        fact = float(fact)
        reach = fun(np.where(mask, np.nan, distances), 1, keepdims=True) * fact
    if filter_reach:
        mask[distances >= reach] = True
        distances[mask] = np.inf
    if fewest is not None:
        mask[(~mask).sum(1) < fewest] = True
    if np.iterable(most):
        extra = np.clip(mask.shape[1] - most, 0, None)
        i = np.where(extra)
        extra = extra[i]
        i = np.repeat(i[0], extra)
        j = mask.shape[1] - np.concatenate(map(range, extra)) - 1
        mask[i, j] = True
        most = most.max()
    return neighbors[:, :most], mask[:, :most], distances[:, :most]
示例#8
0
if __name__=='__main__' and args.nn:
    # Calculate the <nn> correlation for all the tracks in a given dataset
    # TODO: fix this to combine multiple datasets (more than one prefix)

    data, trackids, odata, omask = helpy.load_data(prefix, True, False)
    tracksets, otracksets = helpy.load_tracksets(data, trackids, odata, omask,
                                                 min_length=args.stub)

    coscorrs = [ corr.autocorr(np.cos(otrackset), cumulant=False, norm=False)
                for otrackset in otracksets.values() ]
    sincorrs = [ corr.autocorr(np.sin(otrackset), cumulant=False, norm=False)
                for otrackset in otracksets.values() ]

    # Gather all the track correlations and average them
    allcorr = coscorrs + sincorrs
    allcorr = helpy.pad_uneven(allcorr, np.nan)
    tcorr = np.arange(allcorr.shape[1])/fps
    meancorr = np.nanmean(allcorr, 0)
    errcorr = np.nanstd(allcorr, 0)/sqrt(len(allcorr))
    if verbose:
        print "Merged nn corrs"

    # Fit to exponential decay
    tmax = 50
    fmax = np.searchsorted(tcorr, tmax)
    fitform = lambda *args, **kwargs: 0.5*corr.exp_decay(*args, **kwargs)
    popt, pcov = curve_fit(fitform, tcorr[:fmax], meancorr[:fmax],
                           p0=[1], sigma=errcorr[:fmax].mean() + errcorr[:fmax])
    D_R = 1/popt[0]
    print 'D_R: {:.4f}'.format(D_R)