amperr = pi[0].error sigma = pi[2].value sigmaerr = pi[2].error integral = amp * (2*np.pi)**0.5 *(sigma) int_error = (((amperr/amp)**2 + (sigmaerr/sigma)**2)*integral**2)**0.5 return amp, amperr, sigma*FWHM, sigmaerr*FWHM, integral, int_error, pi[1].value, pi[1].error def integral_ml(pi): return tbl_vals_gaussian(pi)[4:6] F = False T = True sp6e8,spK6e8,_,_ = goddi_nh3_fits.load_spectrum(6, object='w51e8', headerfile='/Users/adam/work/w51/goddi/W51-25GHzcont.map.image.fits') sp6e8.specfit.Registry.add_fitter('hfonly',hfonly_fitter(),7) sp7e8,spK7e8,_,_ = goddi_nh3_fits.load_spectrum(7, object='w51e8', headerfile='/Users/adam/work/w51/goddi/W51-25GHzcont.map.image.fits') sp7e8.specfit.Registry.add_fitter('hfonly',hfonly_fitter(),7) sp9e8,spK9e8,_,_ = goddi_nh3_fits.load_spectrum(9, object='w51e8', headerfile='/Users/adam/work/w51/goddi/W51-27GHzcont.map.image.fits') sp9e8.specfit.Registry.add_fitter('hfonly',hfonly_fitter(),7) sp10e8,spK10e8,_,_ = goddi_nh3_fits.load_spectrum(10, object='w51e8', headerfile='/Users/adam/work/w51/goddi/W51-29GHzcont.map.image.fits') sp10e8.specfit.Registry.add_fitter('hfonly',hfonly_fitter(),7) sp13e8,spK13e8,_,_ = goddi_nh3_fits.load_spectrum(13, object='w51e8', headerfile='/Users/adam/work/w51/goddi/W51-33GHzcont.map.image.fits') sp13e8.specfit.Registry.add_fitter('hfonly',hfonly_fitter(),7) sp6e8.plotter() sp7e8.plotter() sp9e8.plotter() sp10e8.plotter() sp13e8.plotter() limits = [(50, 65), (25,30), (0, 1), (0.1, 6), (30, 35), (0, 1), (0.1, 6)]
import os from hf_only_model import hfonly_66_fixed_fitter, hfonly_fitter, sixsix_movinghf_fitter from spectral_cube import SpectralCube from astropy import units as u import numpy as np import pyspeckit pyspeckit.fitters.default_Registry.add_fitter('hfonly', hfonly_fitter(), 7) pyspeckit.fitters.default_Registry.add_fitter('hfonly66', hfonly_66_fixed_fitter(), 4) pyspeckit.fitters.default_Registry.add_fitter('sixsix_movinghf', sixsix_movinghf_fitter(), 5) cube = SpectralCube.read( '/Volumes/passport/W51-GODDI/W51e2_66_baselined-sc-pb.cube.image.fits') scube = cube[:, 230:307, 205:270] errmap = scube.spectral_slab(-20 * u.km / u.s, 10 * u.km / u.s).std(axis=0) mn = scube.min(axis=0).value guesses = np.empty((7, scube.shape[1], scube.shape[2])) guesses[0, :, :] = 58 guesses[1, :, :] = 26.9 guesses[2, :, :] = 0.010 guesses[3, :, :] = 1.5 guesses[4, :, :] = 31.4 guesses[5, :, :] = 0.010 guesses[6, :, :] = 1.5 negmask = mn < -0.005 guesses[2, negmask] = -0.1 guesses[5, negmask] = -0.1
import os from hf_only_model import hfonly_66_fixed_fitter, hfonly_fitter, sixsix_movinghf_fitter from spectral_cube import SpectralCube from astropy import units as u import numpy as np import pyspeckit pyspeckit.fitters.default_Registry.add_fitter('hfonly', hfonly_fitter(), 7) pyspeckit.fitters.default_Registry.add_fitter('hfonly66', hfonly_66_fixed_fitter(), 4) pyspeckit.fitters.default_Registry.add_fitter('sixsix_movinghf', sixsix_movinghf_fitter(), 5) cube = SpectralCube.read('/Volumes/passport/W51-GODDI/W51e2_66_baselined-sc-pb.cube.image.fits') scube = cube[:, 230:307, 205:270] errmap = scube.spectral_slab(-20*u.km/u.s, 10*u.km/u.s).std(axis=0) mn = scube.min(axis=0).value guesses = np.empty((7, scube.shape[1], scube.shape[2])) guesses[0,:,:] = 58 guesses[1,:,:] = 26.9 guesses[2,:,:] = 0.010 guesses[3,:,:] = 1.5 guesses[4,:,:] = 31.4 guesses[5,:,:] = 0.010 guesses[6,:,:] = 1.5 negmask = mn<-0.005 guesses[2, negmask] = -0.1 guesses[5, negmask] = -0.1