示例#1
0
    #pairwise sequence alignment results
    results = main_algorithm(df_encoded, gap, T, s, 0)

    #reset indexes
    df_encoded = df_encoded.reset_index()

    #convert similarity matrix into distance matrix
    results['score'] = convert_to_distance_matrix(results['score'])

    #exception when all the scores are the same, in this case we continue with the next value of gap
    if ((results['score'] == 0).all()):
        print('entrei')
        continue
    else:
        #hierarchical clustering
        Z = hierarchical_clustering(results['score'], method, gap)

        #validation
        chosen = validation(M, df_encoded, results, Z, method, min_K,
                            max_K + 1)
        chosen_k = chosen[2]
        df_avgs = chosen[0]
        df_stds = chosen[1]

        chosen_results = df_avgs.loc[chosen_k]
        chosen_results['gap'] = gap
        concat_for_final_decision.append(chosen_results)

df_final_decision = pd.concat(concat_for_final_decision, axis=1).T
final_k_results = final_decision(df_final_decision)
示例#2
0
文件: AliClu.py 项目: Nuno09/AliClu
     #reset indexes
     df_encoded = df_encoded.reset_index()
     
     #convert similarity matrix into distance matrix
     results['score'] = convert_to_distance_matrix(results['score'])
     
     #exception when all the scores are the same, in this case we continue with the next value of gap
     if((results['score']== 0).all()):
         #print('entrei')
         continue
     else:
         #hierarchical clustering
         Z = hierarchical_clustering(results['score'],method,gap,T,args.automatic,pp)
         
         #validation
         chosen = validation(M,df_encoded,results,Z,method,min_K,max_K+1,args.automatic,pp,gap,T)
         chosen_k = chosen[2]
         df_avgs = chosen[0]
         df_stds = chosen[1]
         
         chosen_results = df_avgs.loc[chosen_k]
         chosen_results['gap'] = gap
         concat_for_final_decision.append(chosen_results)
 
 ############################################################################
 #       RESULTS
 ############################################################################
 #close pdf  
 pp.close()
 if(args.automatic==1):
     df_final_decision = pd.concat(concat_for_final_decision,axis=1).T