def test_deep_tissue_feature_extractor_aug(self):
        """
        Test deep tissue feature extractor with pipeline runner and with augmentation.
        """
        config_fname = os.path.join(self.current_path, 'config',
                                    'feature_extraction',
                                    'deep_tissue_feature_extractor_aug.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)

        pipeline = PipelineRunner(output_path=self.out_path, **config)
        output = pipeline.run(output_name=self.image_name.replace('.png', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        features = output['features']

        self.assertTrue(isinstance(features, torch.Tensor))  # check type
        # check number of superpixels
        self.assertEqual(features.shape[0], 23)
        # check number of augmentations
        self.assertEqual(features.shape[1], 4)
        self.assertEqual(features.shape[2], 1280)  # check number features

        # Re-run with existing output & ensure equal
        output = pipeline.run(output_name=self.image_name.replace('.png', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        reload_features = output['features']

        self.assertTrue(np.array_equal(features, reload_features))
    def test_gaussian_tissue_mask_with_pipeline_runner(self):
        """
        Test gaussian tissue mask with pipeline runner.
        """

        # 1. Tissue mask detection with saving
        config_fname = os.path.join(self.current_path, 'config', 'tissue_mask',
                                    'tissue_mask.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)
        pipeline = PipelineRunner(output_path=self.out_path, **config)
        output = pipeline.run(output_name=self.image_name.replace('.jpg', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        tissue_mask = output['tissue_mask']

        self.assertEqual(list(tissue_mask.shape),
                         [1024, 1280])  # image HxW = mask HxW
        self.assertTrue(list(np.unique(tissue_mask)) == [0,
                                                         1])  # mask is binary
        # tissue pixel count large enough
        self.assertTrue(np.sum(tissue_mask) > 1e6)
        self.assertTrue(np.sum(tissue_mask) < 2e6)  # but not too large

        # 2. Re-run with existing output & ensure equal
        output = pipeline.run(output_name=self.image_name.replace('.jpg', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        reload_tissue_mask = output['tissue_mask']

        self.assertTrue(np.array_equal(tissue_mask, reload_tissue_mask))
示例#3
0
    def test_color_merged_superpixel_extractor_with_pipeline_runner(self):
        """
        Test color merged superpixel extractor with pipeline runner.
        """

        config_fname = os.path.join(self.current_path, 'config', 'superpixels',
                                    'color_merged_extractor.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)

        pipeline = PipelineRunner(output_path=self.out_path, **config)
        output = pipeline.run(output_name=self.image_name.replace('.png', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        superpixels = output['merged_superpixels_map']

        self.assertTrue(isinstance(superpixels, np.ndarray))  # check type
        self.assertEqual(len(list(superpixels.shape)), 2)  # mask is bi-dim
        # check number of instances
        self.assertEqual(len(np.unique(superpixels)), 23)

        # Re-run with existing output & ensure equal
        output = pipeline.run(output_name=self.image_name.replace('.jpg', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        reload_superpixels = output['merged_superpixels_map']

        self.assertTrue(np.array_equal(superpixels, reload_superpixels))
    def test_handcrafted_feature_extractor(self):
        """
        Test handcrafted feature extractor with pipeline runner.
        """
        config_fname = os.path.join(self.current_path, 'config',
                                    'feature_extraction',
                                    'handcrafted_feature_extractor.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)

        pipeline = PipelineRunner(output_path=self.out_path, **config)
        output = pipeline.run(output_name=self.image_name.replace('.png', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        features = output['features']

        self.assertTrue(isinstance(features, torch.Tensor))  # check type
        # check number of features per instance
        self.assertEqual(features.shape[1], 65)
        # check number of instances detected
        self.assertEqual(features.shape[0], 23)

        # Re-run with existing output & ensure equal
        output = pipeline.run(output_name=self.image_name.replace('.png', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        reload_features = output['features']

        self.assertTrue(np.array_equal(features, reload_features))
    def test_rag_builder_annotation_with_pipeline_runner(self):
        """
        Test rag builder with annotation and pipeline runner.
        """

        config_fname = os.path.join(self.current_path, 'config',
                                    'graph_builder',
                                    'rag_graph_builder_annotation.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)

        pipeline = PipelineRunner(output_path=self.out_path, **config)
        output = pipeline.run(
            output_name=self.image_name.replace('.png', '_annotation'),
            image_path=os.path.join(self.image_path, self.image_name),
            annotation_path=os.path.join(self.image_path,
                                         self.annotation_name))
        graph = output['graph']
        labels, counts = np.unique(graph.ndata['label'].numpy(),
                                   return_counts=True)

        self.assertTrue(isinstance(graph, dgl.DGLGraph))  # check type
        self.assertEqual(graph.number_of_nodes(), 23)  # check number of nodes
        self.assertEqual(graph.number_of_edges(), 112)  # check number of edges
        # check assigned features
        self.assertEqual(graph.ndata["feat"].shape, (23, 1, 1282))
        # check assigned centroid
        self.assertEqual(graph.ndata["centroid"].shape, (23, 2))
        # check assigned node labels
        self.assertTrue(np.array_equal(labels, np.array([0, 1, 2, 4])))
        # check assigned node label counts
        self.assertTrue(np.array_equal(counts, np.array([2, 9, 2, 10])))
    def test_rag_builder_augmentation_with_pipeline_runner(self):
        """
        Test rag builder with augmentation and pipeline runner.
        """

        config_fname = os.path.join(self.current_path, 'config',
                                    'graph_builder',
                                    'rag_graph_builder_aug.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)

        pipeline = PipelineRunner(output_path=self.out_path, **config)
        output = pipeline.run(output_name=self.image_name.replace(
            '.png', '_aug'),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        graph = output['graph']

        self.assertTrue(isinstance(graph, dgl.DGLGraph))  # check type
        self.assertEqual(graph.number_of_nodes(), 23)  # check number of nodes
        self.assertEqual(graph.number_of_edges(), 112)  # check number of edges
        # check assigned features
        self.assertEqual(graph.ndata["feat"].shape, (23, 4, 1282))
        # check assigned centroid
        self.assertEqual(graph.ndata["centroid"].shape, (23, 2))
    def test_graph_diameter_with_pipeline_runner(self):
        """
        Test graph diameter with pipeline runner.
        """

        config_fname = os.path.join(self.current_path, 'config', 'stats',
                                    'graph_diameter.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)
        pipeline = PipelineRunner(output_path=None, **config)
        output = pipeline.run(output_name=None,
                              graph_path=os.path.join(self.graph_path,
                                                      self.graph_name))
        diameter = output['diameter']
        self.assertEqual(diameter, 6)  # check true diameter
    def test_superpixel_counter_with_pipeline_runner(self):
        """
        Test superpixel counter with pipeline runner.
        """

        config_fname = os.path.join(self.current_path, 'config', 'stats',
                                    'superpixel_counter.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)

        pipeline = PipelineRunner(output_path=None, **config)
        output = pipeline.run(output_name=None,
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        count = output['counter']
        self.assertEqual(count, 95)  # check true count
示例#9
0
    def test_nuclei_extractor_with_pipeline_runner(self):
        """Test nuclei extraction with local model."""

        config_fname = os.path.join(self.current_path, 'config',
                                    'nuclei_extraction',
                                    'nuclei_extractor.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)

        pipeline = PipelineRunner(output_path=self.out_path, **config)
        output = pipeline.run(output_name=self.image_name.replace('.png', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name))
        instance_map = output['nuclei_map']
        instance_centroids = output['nuclei_centroids']

        # 3. run tests
        self.assertTrue(isinstance(instance_map, np.ndarray))
        self.assertTrue(isinstance(instance_centroids, np.ndarray))
        self.assertEqual(len(instance_centroids), 331)
    def test_deep_nuclei_feature_extractor_aug(self):
        """Test deep nuclei feature extractor with pipeline runner and with augmentation."""

        config_fname = os.path.join(self.current_path, 'config',
                                    'feature_extraction',
                                    'deep_nuclei_feature_extractor_aug.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)

        pipeline = PipelineRunner(output_path=self.out_path, **config)
        output = pipeline.run(output_name=self.image_name.replace('.png', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name),
                              nuclei_map_path=os.path.join(
                                  self.nuclei_map_path, self.nuclei_map_name))
        features = output['features']

        self.assertTrue(isinstance(features, torch.Tensor))  # check type
        self.assertEqual(features.shape[0], 331)  # check number of nuclei
        # check number of augmentations
        self.assertEqual(features.shape[1], 4)
        self.assertEqual(features.shape[2], 1280)  # check number features
    def test_knn_builder_with_pipeline_runner(self):
        """
        Test knn builder with pipeline runner.
        """

        config_fname = os.path.join(self.current_path, 'config',
                                    'graph_builder', 'knn_graph_builder.yml')
        with open(config_fname, 'r') as file:
            config = yaml.safe_load(file)

        pipeline = PipelineRunner(output_path=self.out_path, **config)
        output = pipeline.run(output_name=self.image_name.replace('.png', ''),
                              image_path=os.path.join(self.image_path,
                                                      self.image_name),
                              nuclei_map_path=os.path.join(
                                  self.nuclei_map_path, self.nuclei_map_name))
        graph = output['graph']

        self.assertTrue(isinstance(graph, dgl.DGLGraph))  # check type
        self.assertEqual(graph.number_of_nodes(), 331)  # check number of nodes
        self.assertEqual(graph.number_of_edges(),
                         1655)  # check number of edges